
\qquad

What We Will Cover in This Section

- What statistics are.
- Descriptive Statistics

 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fundamental Uses

DESCRIPTIVE STATISTICS
Techniques used to organize, summarize, and describe sets of numbers.

INFERENTIAL STATISTICS
Techniques that allow us to make estimates about populations based on sample data.

Levels of Measurement

NOMINAL SCALE
Numbers are used as labels.

ORDINAL SCALE
Numbers are used to indicate rank order.
\qquad

Levels of Measurement

INTERVAL SCALE
Numbers are used to indicate an actual
\qquad amount and there is an equal unit of measurement between adjacent numbers.
RATIO SCALE
Numbers indicate an actual amount and there is a true zero.

Variables

DISCRETE VARIABLE
A variable that can take on only whole \qquad values.
Example: Number of toes or number of cars you have.

CONTINUOUS VARIABLE
A variable that can take on fractional values.
Example: Speedometer reading, height.
\qquad

Frequency Tables and Graphs
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Common Statistics

- Frequency
- The number of people who got a certain score.
- Symbolized with f.
\qquad
- Number
- The total count of observations in a sample. \qquad
- Symbolized with N.
- Percentile \qquad
- The percent of people who got a score and lower.
- Symbolized with P_{n}. \qquad Statistics, an Overview \qquad

Simple frequency distribution (N=20) Score Frequency (f) $\%$ Cum \% (Percentile)			
17	1	5	100
16	0	0	95
15	4	20	95
14	5	25	75
13	4	20	50
12	3	15	30
11	2	10	15
10	1	5	5

Grouped Frequency Distribution ($\mathrm{N}=50$)			
Score	Frequency (f)	Cum f	Cum \% Percentile
94-96	1	50	100.00
91-93	1	49	98.00
88-90	6	48	96.00
85-87	10	42	84.00
82-84	6	32	64.00
79-81	6	26	52.00
76-78	6	20	40.00
73-75	2	14	28.00
70-72	5	12	24.00
67-69	5	7	14.00
64-66	0	2	4.00
61-63	2	2	400

\qquad

Mean

- Sum the scores and divide by the number of scores. \qquad
- Symbols
- Sample: M or X
- Population: μ

Example								
8	9	10	11	12	13	14	15	16
8	9	10		12	13	16	16	46

Overview

The Mean describes the 'typical' score; measures of variability give an index of how much the rest of the scores in the distribution are spread out around the mean.

Deviation Score			
	Score	X-M ${ }_{\text {x }}$	$\left(\mathrm{X}-\mathrm{M}_{\mathrm{x}}\right)^{2}$
	5	-2.5	6.25
	6	-1.5	2.25
	7	-. 5	. 25
	8	. 5	. 25
	9	1.5	2.25
	10	2.5	6.25
Sum	45	0	17.50
Mean	7.5	0	2.92
Statistics, an Overview			

Variance Mean squared deviation score around the mean.

$\frac{\text { Standard Deviation }}{}$Square root of the variance.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Scores (Z-scores)

Standard Score (z-score)

The purpose of the STANDARD SCORE is to describe the location of every score in a distribution relative to the mean.

Equations

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples
Mean $=50 \quad S D=10$
What is the z score for
What is the z score for a raw score of 45 ?
\qquad a raw score of 65?
$\mathrm{Z}=(45-50) / 10$
$\mathrm{Z}=(65-50) / 10$
$Z=-5 / 10$
$Z=15 / 10$
$\mathrm{Z}=-.5$

Uses of the z-score

- Comparing different people on the same test. \qquad
- Comparing same person across different measures. \qquad
- Comparing different people across different tests.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
salde \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Between what two z-scores do 99% of the \qquad cases fall?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Measure of Association
The Correlation

What Correlational Statistics Do

1. Assess the strength of the relationship between two or more variables.
2. Determine the direction of the relationship.

- Positive.
- Negative.
\qquad

The Correlation Coefficient

- Indicated by r.
- Ranges from -1.00 to +1.00
- The number indicates the strength of the relationship.
- The sign indicates whether the relationship is positive or negative.
- Does NOT indicate causality.
\qquad

Measuring the Correlation	
Coefficient	Strength
$\begin{gathered} .60 \text { to } 1.00 \\ -.60 \text { to }-1.00 \end{gathered}$	Very strong
$\begin{gathered} .40 \text { to } .59 \\ -.40 \text { to }-.59 \end{gathered}$	Moderate
$\begin{gathered} .20 \text { to } .39 \\ -.20 \text { to }-.39 \end{gathered}$	Weak
-. 19 to +. 19	Very weak

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Where Simple Correlations are Used

1. Prediction.
2. Validation studies.
3. Reliability studies.
4. Theoretical studies.
5. Identification of surrogate variables.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
