

What We Will Cover in This Section

atistics, an Overvie

- What statistics are.
- Descriptive Statistics
 - Frequency distributions
 - Graphs
 - Mean
 - Standard deviation
- Inferential Statistics
- Z-scores
- Hypothesis Testing

Basic Terminology

STATISTICS

Numerical techniques for describing groups of people or events.

Fundamental Uses

DESCRIPTIVE STATISTICS

Techniques used to organize, summarize, and describe sets of numbers.

INFERENTIAL STATISTICS

Techniques that allow us to make estimates about POPULATIONS based on SAMPLE data.

Population vs. Sample

Population

- ALL members of a group that are alike on some characteristic.
- Infinite in size.
- Parameters are indicated by Greek letters: μ σ

Sample

- A subset of a population.
 Finite in size.
- Numerical estimators are called *statistics*.
- Statistics are indicated by Roman letters: M, S.

 $\triangleleft \diamond \triangleright$

Why Used?

- We cannot collect data from populations.
- We collect data from samples.
- On the basis of the numerical characteristics of samples we try to make conclusions about populations.

tatistics, an Overvie

Levels of Measurement

NOMINAL SCALE

Numbers are used as labels.

ORDINAL SCALE

Numbers are used to indicate rank order.

Levels of Measurement

INTERVAL SCALE

Numbers are used to indicate an actual amount and there is an equal unit of measurement between adjacent numbers.

RATIO SCALE

Numbers indicate an actual amount and there is a true zero.

Common Statistics

- Frequency
 - The number of people who got a certain score.
 - Symbolized with f.
- Number
 - The total count of observations in a sample.
 - Symbolized with N.
- Percent
 - The number in a group (f) divided by the total number (N).
- Percentile
 - The percent of people who got a score and lower.
 - Symbolized with P_n.

Simple frequency distribution (N=20)							
Score	Frequency (f)	%	Cum % (Percentile)				
17	1	5	100				
16	0	0	95				
15	4	20	95				
14	5	25	75				
13	4	20	50				
12	3	15	30				
11	2	10	15				
10	1	5	5				
	Statistics, a	n Overview	13				

Mean

- Sum the scores and divide by the number of scores.
- Symbols
 - Sample: M or \overline{X}

Statistics, an Overvie

Median

- The score below which 50% of the scores fall.
- Represents P₅₀.
- Divides the distribution in half.
- Symbol: Mdn

tatistics, an Overview

	Example								
8	9	10	11	12	13	14	15	16	
8	9	10	11	12	13	16	16	46	
			S	tatistics, an O	verview			21	

Mode

- The score that occurs most frequently in a distribution.
- Used for nominal scales or higher.

tatistics, an Overvie

• Symbol: Mo

					Ra	nge				_
hi • F F	 The distance between the lowest and highest score. Formula Range = Highest Score – Lowest Score Example 									
1	3	4	6	8	12	15	16	18	19	
1	3	4	6	8	12	15	16	18	79	
					Statistics,	an Overvie	w			28

	Devia	ation Sc	ore	_
	Score	X - M _x	(X - Mx) ²	
	5	-2.5	6.25	
	6	-1.5	2.25	
	7	5	.25	
	8	.5	.25	
	9	1.5	2.25	
	10	2.5	6.25	
Sum	45	0	17.50	
Mean	7.5	0	2.92	
	Stat	istics, an Overview	Variance	29

Standard Deviation (S or
$$\sigma$$
)
Square root of the variance.
 $\sqrt{2.92} = 1.71$

Key Learning Points

- Most behavioral characteristics are normally distributed.
- The *Mean* represents the 'typical' score for a sample.
- The *Variance* and *Standard Deviation* measure the variability of scores in a sample.

What Is Rare?

- Some event that has a low probability of happening.
- In research we choose this 'rare' value.
- Typically it is set at 5% (.05) or less.
- Any event that occurs 5% of the time or less is considered to be rare.
- Indicated by: p < .05

tatistics, an Overview

How Inferential Statistics are Used

- 1. When we want to know if the scores for two groups are different.
 - t-test
 - Analysis of Variance (ANOVA)
- 2. When we want to see if there is a relationship between scores.

Correlation coefficient

	t-Test
	t ₍₁₄₎ =.95, p < .36
t	The name of the statistic
(14)	Degrees of freedom (df). Two less than the number of people in the study.
.95	The calculated value for t. It ranges from 0 to large. It is possible to have negative values for t.
p<.36	An indicator as to how rare this value is. It indicates the number of times out of 100 you would get this difference between means based on the sample size.
	Statistics an Overview 50

Another Situation

The management of Sal T. Dogg's restaurant wanted to see if the saltiness of appetizers would influence the number of drinks people purchased. Three sections of the club are targeted to receive appetizers that have either low, medium, or high saltiness. The dependent variable is the number of drinks ordered.

Appetizer saltiness and number or drinks ordered.								
Group 1 Low Salt	Group 2 Medium Salt	Group 3 High Salt						
2	3	3						
3	4	1						
1	4	2						
1	5	2						
2	6	3						
2	4	1						
1	3	1						
2	2	2						
2	4	1						
4	4	2						
M = 2.00	M = 3.90	M = 1.80						

Issue

How to determine if one mean is significantly different from the other means while minimizing the probability of committing a Type I error.

tatistics, an Overview

Α	NOVA	Summ	ary Tab	le
Source	SS	df	MS	F _(crit=3.35)
Between Groups	26.87	2	13.435	14.77
Within Groups	24.50	27	.91	
Total	51.37	29		
	S	tatistics, an Overvi	ew	56

What Correlations Look Like							
	Competence (1)	Self Confidence	Recklessn ess(1)	Competence (2)	Recklessn ess(2)		
Competence(1)	1	485(**)	.433(**)	.947(**)	.398(**)		
Self Confidence	485(**)	1	054	480(**)	013		
Recklessness(1)	.433(**)	054	1	.415(**)	.986(**)		
Competence(2)	.947(**)	480(**)	.415(**)	1	.369(**)		
Recklessness(2)	.398(**)	013	.986(**)	.369(**)	1		
 * Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed). 							
		Statistics, an	Dverview		65		

Effect Size

- 1. How strong was the treatment?
- 2. How strong is the relationship?

statistics, an Overvie

What is hypothesis testing?

A set of logical and statistical guidelines used to make inferential decisions from sample statistics to population characteristics.

Autistics, an Overvie

Types of Hypotheses

- Research hypothesis.
- · Logical hypotheses.
 - Null hypothesis (H_o).
- Alternative hypothesis (H_{a)}.
- Statistical hypothesis.

atistics, an Overvie

Research Hypothesis

Statement in words as to what the investigator expects to find.

Example.

Students who drink caffeine will be able to memorize information faster than students who do not drink caffeine.

$\triangleleft \diamond \triangleright$

Logical Hypotheses

Null Hypothesis (H_o). Statement that the treatment does *not* have the expected effect.

Alternative Hypothesis (H_a). Statement that the treatment had the expected effect.

Characteristics of the Logical Hypotheses

- 1. They are mutually exclusive.
- 2. They are mutually exhaustive.

atistics, an Overvie

How they fit together

Research hypothesis.

Students who drink caffeine will be able to memorize information faster than students who do not drink caffeine.

How They Fit Together #2

• H_o

Students who drink caffeine will not be able to memorize information faster than people who do not drink caffeine.

- Non-caffeine and caffeine drinkers are the same.
- Non-caffeine drinkers are faster.
- H_a

Students who drink caffeine will memorize information faster than those who do not drink caffeine.

Decision Making Criteria

- We make statistical inferences based on the probability that the results <u>may or may not</u> have <u>happened by chance</u>.
- 2. Since we are dealing with sampling error there is always a possibility that data we collect could have happened by chance.
- 3. Our model for making this decision is founded on the normal distribution.

$\triangleleft \diamond \triangleright$

Decision Steps

- 1. We start by assuming that the Null Hypothesis (H_0) is true.
- 2. When a statistical result is rare we conclude that it probably did not happen by chance.
- 3. If we conclude that a result did not happen by chance (e.g. it is rare), we reject $\rm H_{o}.$
- 4. The only option is to conclude that the true state of affairs is represented by $\rm H_{a}.$

an Overview

Key Learning Points #1

- 1. Science is conservative.
- 2. We assume that the research hypothesis is invalid until the evidence is so strong that we must conclude that it is true.
- 3. We statistically 'test' the assumption that the research hypothesis is not true.
- 4. If the data are so strong that we believe that they could not have happened by chance, then we reject H_o .

▲ ▼

Key Learning Points #2

- Since our decisions are based on probability theory not absolute surety, we can make mistakes.
- The probability of concluding that the research hypothesis is correct when it isn't (rejecting Ho when it is true) is represented by alpha (α).
- 7. The probability of failing to find a result when there is one is represented by beta (β) .

