SำTiTinc an Overview

4・ロ

What We Will Cover in This Section

What statistics are.

- Descriptive Statistics
- Frequency
distributions
Graphs
- Mean
- Standard deviation
- Inferential Statistics - Z-scores
- Hypothesis Testing

A•D

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basic Terminology

STATISTICS

Numerical techniques for describing groups of people or events.

Fundamental Uses
DESCRIPTIVE STATISTICS
Techniques used to organize, summarize, and describe sets of numbers.

INFERENTIAL STATISTICS
Techniques that allow us to make estimates about POPULATIONS based on SAMPLE data.

4-

Population vs. Sample

- Population
- ALL members of a group that are alike on some characteristic.
- Infinite in size.
- Parameters are indicated by Greek letters: $\mu \sigma$
- Sample
- A subset of a population.
- Finite in size.
- Numerical estimators are called statistics.
- Statistics are indicated by Roman letters: M, S.
\qquad
- We cannot collect data from populations.
- We collect data from samples.
- On the basis of the numerical characteristics of samples we try to make conclusions about populations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Levels of Measurement
NOMINAL SCALE
Numbers are used as labels.

ORDINAL SCALE

Numbers are used to indicate rank order.

Levels of Measurement

INTERVAL SCALE

Numbers are used to indicate an actual amount and there is an equal unit of measurement between adjacent numbers.

RATIO SCALE

Numbers indicate an actual amount and there is a true zero.

- 1 -

Frequency Tables and Graphs

Common Statistics

\qquad
\qquad

- The number of people who got a certain score.
\qquad
- Number
\qquad
- Percent
- The number in a group (f) divided by the total number (N).
- Percentile
- The percent of people who got a score and lower.
- Symbolized with P

Simple frequency distribution (N=20)			
Score	Frequency (f)	$\%$	Cum \% (Percentile)
17	1	5	100
16	0	0	95
15	4	20	95
14	5	25	75
13	4	20	50
12	3	15	30
11	2	10	15
10	1	5	5

4-D

Conformity (V-4) Raw Scores

A-D

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mean

- Sum the scores and divide by the number of scores.
- Symbols
- Sample: M or \bar{X}

Median

- The score below which 50% of the scores fall.
- Represents P_{50}.
- Divides the distribution in half.
- Symbol: Mdn

- The score that occurs most frequently in a distribution. \qquad
- Used for nominal scales or higher.
- Symbol: Mo
\qquad
\qquad
\qquad 4•D \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two Normal Distributions with the Same \qquad
\qquad
\qquad
A

B

-4・ロ
\qquad
\qquad

Overview

The Mean describes the 'typical \qquad score'; measures of variability give an index of how much the rest of the \qquad scores in the sample are spread out around the mean.

Range

- The distance between the lowest and highest score.
- Formula

Range $=$ Highest Score - Lowest Score

- Example

1	3	4	6	8	12	15	16	18	19
1	3	4	6	8	12	15	16	18	79

Variance (S^{2} or $\boldsymbol{\sigma}^{2}$)

Mean squared deviation score around the mean.

Square root of the variance.

$$
\sqrt{2.92}=1.71
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Large and Small Standard Deviations
\qquad
\qquad
\qquad
A

\qquad
\qquad
B

4•D
\qquad
\qquad

Key Learning Points

- Most behavioral characteristics are normally distributed.
- The Mean represents the 'typical' score for a sample.
- The Variance and Standard Deviation measure the variability of scores in a sample.

Inferential
Statistics

4・ロ

Issue

In research we collect data from SAMPLES and try to generalize those results to POPULATIONS.

- To what degree does a sample mean represent the population to which we want to make inferences?
- Does this sample represent population A or does it represent population B?

Underlying Concept

Question: Do these two samples represent the same population or do they represent two different populations?

What is Rare?

Means that are so far apart that we conclude that the distance between them could not have happened by chance.

4-

Units of Measurement

\qquad
\qquad
\qquad
\qquad
\qquad

Units of Measurement

4-1

Slicing the Normal Curve

4•D

Key Unit \#1

What Is Rare?

- Some event that has a low probability of happening.
- In research we choose this 'rare' value.
- Typically it is set at 5% (.05) or less.
- Any event that occurs 5% of the time or less is considered to be rare. \qquad
- Indicated by: p < . 05
\qquad
\qquad

How Inferential Statistics are Used

1. When we want to know if the scores for two groups are different.

- t-test
- Analysis of Variance (ANOVA)

2. When we want to see if there is a relationship between scores.

- Correlation coefficient
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The t-test

Question: Do these two samples represent the same population or do they represent two different populations?

4-D

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

t-Test

$\mathrm{t}_{(14)}=.95, \mathrm{p}<.36$	
t	The name of the statistic
(14)	Degrees of freedom (df). Two less than the number of people in the study.
. 95	The calculated value for t . It ranges from 0 to large. It is possible to have negative values for t.
p<. 36	An indicator as to how rare this value is. It indicates the number of times out of 100 you would get this difference between means based on the sample size.

4-

Another Situation

The management of Sal T. Dogg's restaurant wanted to see if the saltiness of appetizers would influence the number of drinks people purchased. Three sections of the club are targeted to receive appetizers that have either low, medium, or high saltiness. The dependent variable \qquad is the number of drinks ordered.

Appetizer saltiness and number or drinks ordered.		
Group 1 Low Salt	Group 2 Medium Salt	Group 3 High Salt
2	3	3
3	4	1
1	4	2
1	5	2
2	6	3
2	4	1
1	3	1
2	2	2
2	4	1
4	4	2
$M=2.00$	$\mathrm{M}=3.90$	$\mathrm{M}=1.80$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Issue

How to determine if one mean is significantly different from the other means while minimizing the probability of committing a Type I error.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Analysis of Variance (ANOVA)

Graph of Saltiness Ratings

IAㅁ
 4-1

- 4 •

Negative Correlation
\qquad
 - 4 •

Zero Correlation Example
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Competence (1)	Self Confidence	Recklessn ess(1)	Competence (2)	Recklessn ess(2)
Competence(1)	1	-.485(**)	.433(**)	.947(**)	.398(**)
Self Confidence	-.485(**)	1	-. 054	-.480(**)	-. 013
Recklessness(1)	.433(**)	-. 054	1	.415(**)	.986(**)
Competence(2)	.947(**)	-.480(**)	.415(**)	1	.369(**)
Recklessness(2)	.398(**)	-. 013	.986(**)	.369(**)	1

[^0]
4.

\qquad
\qquad

1. How strong was the treatment?
2. How strong is the relationship?

A•D

Power

The ability of the statistical procedure to detect the effect being measured.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is hypothesis testing?

A set of logical and statistical guidelines used to make inferential decisions from sample statistics to population characteristics.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Hypotheses

- Research hypothesis.
- Logical hypotheses. \qquad
- Null hypothesis (H_{0}).
- Alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right.$.
- Statistical hypothesis.

4-D

Research Hypothesis

Statement in words as to what the investigator expects to find.

Example.

Students who drink caffeine will be able to memorize information faster than students who do not drink caffeine.

Logical Hypotheses

Null Hypothesis $\left(\mathrm{H}_{0}\right)$.
Statement that the treatment does not have the expected effect.

Alternative Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$. Statement that the treatment had the expected effect.

4-

Characteristics of the Logical Hypotheses

1. They are mutually exclusive.
2. They are mutually exhaustive.

4-

How they fit together

Research hypothesis. \qquad
Students who drink caffeine will be able to memorize information faster than students who do not drink caffeine.

How They Fit Together \#2

- H_{0}

Students who drink caffeine will not be able to memorize information faster than people who do not drink caffeine.

- Non-caffeine and caffeine drinkers are the same.
- Non-caffeine drinkers are faster.
- H_{a}

Students who drink caffeine will memorize information faster than those who do not drink caffeine.

Caffeine Example, AGAIN!
$H_{a}: \quad M_{\text {caffeine }}<M_{\text {no caffeine }}$
$H_{0}: \quad M_{\text {caffeine }}=M_{\text {no caffeine }}$
or
$\mathbf{M}_{\text {caffeine }}>\mathbf{M}_{\text {no affeine }}$

4-1

Decision Making Criteria

1. We make statistical inferences based on the probability that the results may or may not have happened by chance.
2. Since we are dealing with sampling error there is always a possibility that data we collect could have happened by chance.
3. Our model for making this decision is founded on the normal distribution.

How the Decision Works

Critical Region

4-

Decision Steps

1. We start by assuming that the Null Hypothesis $\left(\mathrm{H}_{0}\right)$ is true.
2. When a statistical result is rare we conclude that it probably did not happen by chance.
3. If we conclude that a result did not happen by chance (e.g. it is rare), we reject H_{o}.
4. The only option is to conclude that the true state of affairs is represented by H_{a}.

4•1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Alpha Level

4-

Key Learning Points \#1

1. Science is conservative.
2. We assume that the research hypothesis is invalid until the evidence is so strong that we must conclude that it is true.
3. We statistically 'test' the assumption that the research hypothesis is not true.
4. If the data are so strong that we believe that they could not have happened by chance, then we reject H_{0}.

Key Learning Points \#2
5. Since our decisions are based on probability theory not absolute surety, we can make mistakes.
6. The probability of concluding that the research hypothesis is correct when it isn't (rejecting Ho when it is true) is represented by alpha (α).
7. The probability of failing to find a result when there is one is represented by beta (β). \qquad

- 18

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: Correlation is significant at the 0.01 level (2-tailed)
 Correlation is significant at the 0.05 level (2 -tailed).

