

What We Will Cover in This Section

- Introduction
- One-sample t-test.
 Independent samples t-test.
- Dependent samples ttest.
- · Power and effect size.
- · Key learning points.

A Research Situation

A high school wants to know if a special SAT preparation program has influenced the scores of a group of 25 participants.Historically the mean verbal score for all of their graduating seniors is μ = 485, but they don't have the standard deviation. The sample has a mean SAT score of 497 with a standard deviation of 10.

1. What is the research hypothesis?

- 2. What is H_o?
- 3. What is the statistical hypothesis?
- 4. Is this a one-tailed or two-tailed test?

z-test and the Single Sample t-test					
Known statistics	z-test	Single sample t- test			
μ	Yes	Yes			
σ	Yes	No			
М	Yes	Yes			
S	Yes*	Yes			
10/17/2005 19664 Later 5					
10/13/2005 P/06 1-tests 5					

Degrees of Freedom (df)

- Developed from the notion that when you know that a group of N numbers sum to S, and if you know N-1 of the numbers, the Nth number is fixed.
- Example.

If a group of 4 numbers add up to 15 and three of the numbers are 5, 6, and 2, what is the fourth number?

In this case you have N-1 degrees of freedom.

Back to the Example: Computation

A high school wants to know if a special SAT preparation program has influenced the scores of a group of 25 participants.Historically the mean verbal score for all of their graduating seniors is μ = 485, but they don't have the standard deviation. The sample has a mean SAT score of 497 with a standard deviation of 10.

$$\sigma_{\overline{X}} = \frac{10}{\sqrt{25}}$$
$$\sigma_{\overline{X}} = 2$$
$$t_{(N-1)} = \frac{497 - 485}{2}$$
$$t_{(24)} = 6.00$$

P766 t-tests

OL 1 toil	_			PROPORTIC	ON JN ONE TAIL		
u, rtaii		0.25	0.10	0.05	0.025	0.01	0.005
(I) toil				PROPORTIO	S IN TWO TAILS	i	
u, z tali		0.50	0.20	0.10	(0.05,	0.02	0.01
	1	1.000	3.078	6.314	12.706	31.821	63,657
	2	0.816	1.886	2,920	4,303	6.965	9,925
	3	0.765	1.638	2.353	3.182	4.541	5.841
	4	0.741	1.533	2.132	2.776	3.747	4.604
	5	0.727	1,476	2,015	2,571	3.365	4,032
	6	0.718	1.440	1.943	2.447	3.143	3.707
	7	0.711	1.415	1.895	2.365	2.998	3.499
	8	0.706	1.397	1.860	2.306	2.896	3.355
	9	0.703	1.383	1.833	2.262	2.821	3.250
	10	0,700	1.372	1.812	2.228	2.764	3.169
		0.697	1.363	1.796	2.201	2.718	3,100
	12	0.695	1.356	1.782	2.179	2.681	3.055
	13	0.694	1,350	1.771	2.160	2.650	3.012
	14	0.692	1.345	1.761	2.145	2.624	2.973
	15	0.691	1.341	1.753	2.131	2.602	2.947
	16	0.690	1.337	1,746	2,120	2.583	2.921
	17	0.689	1.333	1.740	2.110	2.567	2.895
	18	0.688	1.330	1.7.34	2.101	2.552	2.878
	19	0.688	1.328	1.729	2.093	2.539	2.861
	20	0.687	1.325	1.725	2.086	2.528	2.845
	21	0.686	1.323	1.221	2.080	2.518	2.831
	22	0.686	1.321	1.717	2.074	2.508	2.819
	23	0.685	1.319	1.714	2.069	2,500	2.807
	24	0.685	1.318	1.711	3.064	2 492	° 707
	25	0.684	1.316	1.708	2.060	2.485	2 787
	26	0.684	1.315	1.706	2.056	2.479	2.779
	27	0.684	1.314	1.703	2.052	2 473	2 771
	28	0.683	1313	1.701	2.048	2.467	2 763
	242	0.683	1.311	1.699	2 (145	7.467	2 756
	30	0.683	1.310	1.697	2.042	2.457	2 750
	40	0.681	1 303	1.684	2.021	2 423	2 70.2
	60	0.679	1.396	1.671	2 (88)	2 390	2.660
	120	0.677	1.289	1.658	1.980	2.358	2.612
		0.674	1.282	1.645	1.960	2.326	2.576
10/12/2005	Table III o	F.R. A. Eisher an	d F. Yates, Stati:	dival Tables for h	interical Arricuti	and and Medical	Research.

Assumptions of Single Sample t-test

- 1. The population mean is available.
- 2. The population distribution is normal.
- 3. The observations are *independent*.
- 4. Measurement is done on an interval or ratio scale.

P/66 I-tests

Independent Sample t-Test

The grades for a group of CUP soccer players tend to be somewhat below average. This might be a result of bouncing balls off their heads. To deal with this, twenty first-year players are equipped with helmets. A control group of 20 players played without helmets. At the end of the school year their grades are compared.

- 1. What is the research hypothesis?
- 2. What is H_o?
- 3. What is the statistical hypothesis?
- 4. Is this a one-tailed or two-tailed test?

Γ	Single Sample vs. Independent Sample t-test					
	KnownSingleIndependentstatisticsSample tSample t					
	μ	No				
	σ	No				
	M ₁	Yes	Yes			
	s ₁	Yes	Yes			
	M ₂		Yes			
	s ₂ Yes					
-	10/13/2005 P766 1-tests 14					

Assumptions

- 1. The observations within each sample are independent.
- 2. The populations from which the samples are drawn are normally distributed.
- 3. The populations from which the samples are drawn have equal variances.

P766 t-tests

Issues A significant component of the standard error in the independent groups t-test is random error generated by two separate samples. This random error masks any treatment effect. One way to control for this is to use the same subjects in both treatment conditions.

Repeated Measures t-test

A study in which <u>participants are</u> <u>measured more than once</u> on the <u>same dependent variable</u>. The <u>same subjects</u> are used in <u>both</u> treatment conditions.

Weight Gain Study						
Before	After	Difference				
182	177	-5				
184	186	2	Quality in the section			
184	192	8	Statistical question.			
181	180	180 -1 Could these	Could these			
187	187 0 difference scores	difference scores				
180	189	9	have happened by			
179	179 183		chance?			
171	182	11				
184	186	2				
180	184	4				
	Mean	3.4				
10/13/2005 P266 t-tests 27						

Weight Gain Study, Step 1								
	Before After Difference (D - M _D) ²							
	182	177	-5	70.56				
	184	186	2	1.96				
	184	192	8	21.16				
	181	180	-1	19.36				
	187	187	0	11.56				
	180	189	9	31.36				
	179	183	4	.36				
	171	182	11	57.76				
	184	186	2	1.96				
	180	184	4	.36				
SS _D = 216.40								

Weight Gain Study, Step 2Compute the Standard
Error of D.
$$S_{\overline{D}} = \sqrt{\frac{24.04}{10}}$$
 $S_{\overline{D}} = \sqrt{\frac{S_D^2}{N}}$ $S_{\overline{D}} = \sqrt{\frac{24.04}{10}}$ $S_{\overline{D}} = \sqrt{\frac{S_D^2}{N}}$ $S_{\overline{D}} = \sqrt{2.404}$ $S_{\overline{D}} = 1.551$

Power

- Can the statistical test detect a treatment difference when the difference exists?
- POWER is the probability that the test will correctly reject a false null hypothesis.
- A weak statistical test will raise the probability of making a Type II error.

P766 t-tests

Things That Influence Power

- 1. Alpha level.
- 2. One vs. two-tailed test.
- 3. Sample size.

P/00 I-tests

Effect Size

- In experimental research effect size is the magnitude or influence of the independent variable on the dependent variable.
- In correlational research effect size is the strength of the relationship between the variables.

P766 t-tests

Statistical vs. Practical Significance

- Statistical significance lets you know whether your results could have happened by chance.
- Practical significance the judgment as to whether the found relationships are meaningful.

P766 t-tests

$$\widehat{Omega Squared}(\widehat{o}^{2})$$

$$\widehat{\omega}^{2} = \frac{t_{obt}^{2} - 1}{t_{obt}^{2} + N - 1}$$
Soccer Study
$$\widehat{\omega}^{2} = \frac{3.4316^{2} - 1}{3.4316^{2} + 20 - 1}$$
Interpreted in terms of
the amount of variability
accounted for in the
dependent variable
when one knows the
level of the independent
variable.
$$\widehat{\omega}^{2} = \frac{10.9716}{30.9716}$$

$$\widehat{\omega}^{2} = .35$$

Γ	Comparison of eta ² and $\hat{\omega}^2$						
	eta ² $\hat{\omega}^2$						
	SAT Study	.60	.58				
	Soccer Study	.40	.35				
	Weight Gain Study	.35	.35				
10/13/2005 P766 Lesss 44							

• If H_o is rejected then your research hypothesis is supported.

 If H_o is not rejected then your research hypothesis is not supported.

Step 2. Compute the Pooled Variance

$$s_p^2 = \frac{SS_1 + SS_2}{df_1 + df_2}$$

Comfort Problem, Part 1							
Person	Comfortable	Uncomfortable	D	(D-M _D) ²			
1	16	10					
2	5	3					
3	12	10					
4	9	5					
5	23	15					
10/13/2005 P766 t-tests 61							

