

Overview

The Mean describes the 'typical' score; measures of \qquad variability give an index of how much the rest of the scores in the distribution are spread out around the mean.
\qquad
\qquad
\qquad
\qquad

Two Normal Distributions with the Same Mean
\qquad I
\qquad
\qquad A

B

\qquad $\langle\Delta\rangle$ \qquad

Range

- The distance between the lowest and highest score.
- Formula

Range $=$ Highest Score - Lowest Score

- Example

1	3	4	6	8	12	15	16	18	19
1	3	4	6	8	12	15	16	18	79

$\rangle>$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Properties of the Range

1. Gross descriptive statistic.
2. Highly sensitive to extreme scores. \qquad
3. Relatively unstable.
4. Insensitive to the shape of the distribution between the two scores.
5. Scores represent interval or ratio scales.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Semi-Interquartile Range

- Computation

Interquartile Range $(I Q)=P_{75}-P_{25}$
Seni-InterquartileRange(SIQ $=\frac{P_{75}-P_{25}}{2}$

- Interpretation

The distance between the middle 50% of the scores. \qquad
\qquad

Interquartile Range: Properties

1. Not sensitive to extreme scores.
2. Relatively stable.
3. Does not consider the shape of the distribution.
4. Ignores all but two of the scores.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interquartile Range Assumptions

1. Scores represent interval or ratio scales.
\qquad
\qquad
\qquad
\qquad
\qquad

Sum of Squares

Sum of the squared deviation scores around the mean.

$$
\begin{gathered}
S S=\sum(X-\mu)^{2} \\
S S=\sum\left(X-M_{X}\right)^{2}
\end{gathered}
$$

4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Degrees of Freedom (df)

- Number of independent scores.
-Why use it?
- The sample variance is a biased estimate of the population variance.
- It tends to underestimate the population variance.
- To correct, we reduce the N by 1 . These are the
\qquad degrees of freedom.
\qquad
\qquad

Standard Deviation

Square root of the variance.

Sample Formula
Population Formula

$$
\begin{array}{ll}
S_{X}=\sqrt{\frac{S S}{N}} & s_{X}=\sqrt{\frac{S S}{N-1}} \\
S_{X}=\sqrt{S_{X}^{2}} & s_{X}=\sqrt{s_{X}^{2}}
\end{array}
$$

Population Parameters

Statistic	Sample	Sample (used to estimate the population)	Population symbol
Variance	S^{2}	$\mathrm{~s}^{2}$	σ^{2}
Standard Deviation	S	s	σ

4 $1>$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Properties of the Standard Deviation

1. Sensitive to the location of each score in the distribution.
2. Sensitive to extreme scores.
3. Resistant to sampling fluctuation.
4. Is used in most higher order statistical computations.
<1>

Assumptions

1. The variables are measured on an interval or ratio scale.
2. There are no outliers in the distribution.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interpretation and Use

- Useful to compare two groups when there are widely differing scores.
- Useful to assess the amount of variability in two groups of scores.
- Provides input to other statistical procedures.
\qquad

