

Standard Score (z-score)

The purpose of the STANDARD SCORE is to describe the location of every score in a distribution relative to the mean.

Equations

Defining
Equation
$z=\frac{x-\mu}{\sigma}$

$$
z=\frac{x-\bar{X}}{S}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples

Mean $=50 \quad$ SD $=10$
What is the z score for What is the z score for a raw score of 65? a raw score of 45 ?
$\mathrm{Z}=(65-50) / 10 \quad \mathrm{Z}=(45-50) / 10$
$Z=15 / 10$
$Z=-5 / 10$
$\mathrm{Z}=1.5$
$\mathrm{Z}=-.5$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Practice

- A test has a mean of 60 and a standard deviation of 7 . Compute the \qquad z-scores for the following grades.
- 74
- 53
- 65
- 40
\qquad
\qquad
\qquad

Name	Flea-flicking test	Gnome-naming test
Kim	33	72
Jan	18	66
Fran	22	68
Pat	41	77
Mean	29.25	70.75
SD	11.70	4.86

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 4l| \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Raw Score }=\left(z \text {-score } x S_{x}\right)+\bar{X}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples

Mean $=35 \quad S D=4$
What is the raw score What is the raw score \qquad for a z-score of 1.5 ? for a z-score of -.62?

Raw $=(1.5 \times 4)+35 \quad$ Raw $=(-.62 \times 4)+35$
Raw $=6+35 \quad$ Raw $=-2.48+35$ \qquad
Raw $=41 \quad$ Raw $=32.52$
\qquad
\qquad

Z Score to New Raw Score (Standardized Scores) \qquad
$X_{\text {New }}=\left(Z_{\text {Old }} x S D_{\text {New }}\right)+\bar{X}_{\text {New }}$
Mean $=100 S D=16$

What is the IQ score for	What is the IQ score for
a z-score of $1.5 ?$	a z-score of $-1 ?$
IQ $=(1.5 \times 16)+100$	IQ $=(-1 \times 16)+100$
IQ $=24+100$	IQ $=-16+100$
IQ $=124$	IQ $=84$

\qquad
\qquad
\qquad

Properties of z-Score

1. The mean of the z distribution is 0 .
2. The standard deviation of the z distribution is 1.00 .
3. The z-score always indicates how far a score is from the mean. The units of measurement are standard deviation units.
4. The shape of the z-distribution will be the same as the parent distribution.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assumptions

1. The distribution is normal.
2. The units of measurement are \qquad interval or ratio scales.

Uses of the z-score

- Comparing different people on the same test. \qquad
- Comparing same person across different measures. \qquad
- Comparing different people across different tests. \qquad
\qquad
\qquad

