Graduate Statistics

Non-parametric Statistics

What We Will Cover in This Section

- Introduction
- Correlational Techniques
 - Spearman
 - Point Biserial
 - Phi Coefficient
- Chi Square

What Is/Are It?

< 🔿 🕨

Statistical techniques applied to a set of variables when one <u>cannot</u> <u>assume</u> that the data are normally distributed or the data do <u>not</u> meet the requirements for an <u>interval</u> <u>scale</u>.

Correla	Correlational Techniques				
Technique	Variable 1	Variable 2			
Spearman Correlation (r _s)	Ordinal data	Ordinal data			
Point Biserial (r _{pb})	Interval or Ratio	Dichotomous			
Phi Coefficient (φ)	Dichotomous	Dichotomous			

Spearman Correlation (r_s)

- The Null Hypothesis is $H_{o}: \rho_{s} = 0$ The Alternative Hypothesis is
 - $H_1: \rho_s \neq 0$

Spearman Correlation Example

A researcher wanted to know if there was a relationship between leadership skill and aggressiveness. The investigator first had ten supervisors rank ordered on their leadership skill, then had them rank ordered on their aggressiveness.

 $\triangleleft \diamond \triangleright$

Subject	R _{agg}	R _{lead}	d	d ²
1	2	3	1	1
2	3	1	2	4
3	7	5	2	4
4	6	9	3	9
5	1	2	1	1
6	5	6	1	1
7	10	8	2	4
8	8	10	2	4
9	9	7	2	4
10	4	4	0	0

Formula and Computation

$$r_{s} = 1 - \frac{6(\Sigma d^{2})}{N(N^{2} - 1)}$$
 $r_{s} = 1 - \frac{6(32)}{10(100 - 1)}$
 $r_{s} = 1 - \frac{192}{990}$
 $r_{s} = .806$

When Used

- Both sets of data are ordinal. or...
- One set is interval/ratio and the other is ordinal.
 - or...
- The data are interval or ratio but are not normally distributed.

$\triangleleft \Diamond \triangleright$

Assumptions

- 1. The sample has been randomly selected from the population.
- 2. The relationship between the variables is linear.

Kool Facts Regarding r_s

- 1. Given no tied ranks r_s and r give the same result.
- 2. Pearson r is more sensitive.
- 3. Pearson r is a more powerful statistic.

Point-Biserial (r_{pb})

- Used when
 - One variable is ordinal or interval
 - The second variable has only two values.
- The Null Hypothesis is $\label{eq:hopp} H_o: \, \rho_{pb} = 0$
- The Alternative Hypothesis is H_1 : $\rho_{pb} \neq 0$

Examples of r_{pb}

- You want to correlate gender to GPA.
- You want to correlated drivers training to number of traffic accidents.
- You want to correlate marital status to depression.

Example

Z.Z. Bottoms wanted to know if there were differences in attitudes toward rap-country-soul music. Z. Z. got a group of eight volunteers and divided them into two groups: those under 30 years old and those over 30 years old. Bottoms then had them rate their feelings about the music.

These data are summarized on the following page.

	Summary	
Attitude	Age Group	Age Category
5	Over 30	0
0	Under 30	1
4	Over 30	0
1	Over 30	0
1	Under 30	1
2	Over 30	0
3	Under 30	1
0	Under 30	1
12/9/2005	P766 Non-narametric statistics	

Kool Facts Regarding r_{pb}

- When the dichotomous variable is coded 0 and 1, r_{pb} is equal to the Pearson r.
- Point-biserial and t-test are closely related.
 - $-\,r_{\rm pb}$ looks at strength and uses all data.
 - t looks at differences between means.

$Phi\text{-}coefficient~(\varphi)$

- Used when
 Both variables are dichotomous.
- The Null Hypothesis is $H_0: \phi = 0$
- The Alternative Hypothesis is $\label{eq:H1} \begin{array}{l} H_1 \colon \varphi \neq 0 \end{array}$

One Way Chi-Square (χ^2) Goodness of Fit

- One group.
 - Group is grouped categorically (nominal scale).
- Null hypothesis.
 - There is no difference in the distribution of the scores across the group.
- Alternative hypothesis.
 - There is a difference in the scores across the group.

Chi-square Example

The noted statistician, Dr. Anne Nova, was interested in academic preferences. She got a sample of 100 students and asked them to select the school activity they liked best from the following list.

> Statistics Psychological Testing Experimental Psychology Recess

> > $\triangleleft \diamond \triangleright$

Hypotheses

- If there is no specific prediction.
 - Null Hypothesis.

 $H_o: f_{stat} = f_{experimental} = f_{testing} = f_{recess}$

- Alternative Hypothesis. H_A : $f_{stat} \neq f_{experimental} \neq f_{testing} \neq f_{recess}$
- Note: The researcher may specify the proportion of cases in H_A.

Results				
	Statistics	Experimental	Testing	Recess
f _e	25	25	25	25
f _o	40	30	20	10
f _o - f _e	15	5	-5	-15
$(f_{\rm o} - f_{\rm e})^2$	225	25	25	225
$\frac{(f_{\rm o}-f_{\rm e})^2}{f_{\rm e}}$	9	1	1	9
12/9/2005	225/2	25 Arametric statistic	25	24

Two-Way Chi-Square Test of Independence

- Two variables.
 - People are grouped categorically (nominal scale).
- Null hypothesis.
 - There is no difference in the distribution of the scores across the variables.
- Alternative hypothesis.
 - There is a difference in the distribution of the scores across the variables.

Chi-Square (r x k) Example

The noted statistician, Dr. Polly Nomial, wanted to repeat Anne Nova's study but was interested if there was an effect on the basis of gender. So she asked a sample of students to select their preference for academic activity then broke the group into male and female respondents.

Nomial's Data					
	Statistics	Experimental	Testing	Recess	Total
Male	15	10	10	15	50
Female	20	10	5	5	40
	35	20	15	20	90
12/9/20	05	P766 Non-para	metric statistics		

1. Compute the expected values.					
	Statistics	Experimental	Testing	Recess	Total
Male	15 f _e =19.44	10 f _e = 11.11	10 f _e = 8.33	15 f _e = 11.11	50
Female	20 f _e = 15.56	10 f _e = 8.89	5 f _e = 6.67	5 f _e = 8.89	40
	35	20	15	20	90
$f_e = \frac{RowTotal \ x \ Column \ Total}{Grand \ Total}$					
12/9/20)5	P766 Non-paran	tetrie statistics		29

2. Compute $(f_e - f_o)^2$						
	Statistics	Experiment al	Testing	Recess	Total	
Male	15 f _e =19.44 (f _e -f _o) ² =19.71	10 $f_e = 11.11$ $(f_e - f_o)^2 = 1.21$	10 $f_e = 8.33$ $(f_e - f_o)^2 = 2.79$	15 f _e = 11.11 (f _e -f _o) ² =15.13	50	
Female	20 f _e = 15.56 (f _e -f _o) ² =19.71	10 $f_e = 8.89$ $(f_e - f_o)^2 = 1.23$	5 $f_e = 6.67$ $(f_e - f_o)^2 = 2.79$	5 f _e = 8.89 (f _e -f _o) ² =15.13	40	
	35	20	15	20	90	
129/2005 Př66 Norau jametric statistics 30						

3. Compute $\frac{(f_e - f_o)^2}{f_e}$					
	Statistics	Experiment al	Testing	Recess	Total
Male	15 f _e =19.44 (f _e -f _o) ² =19.71 1.014	10 $f_e = 11.11$ $(f_e - f_o)^2 = 1.21$.109	10 $f_e = 8.33$ $(f_e - f_o)^2 = 2.79$.335	15 f _e = 11.11 (f _e -f _o) ² =15.13 1.362	50
Female	20 f _e = 15.56 (f _e -f _o) ² =19.71 1.267	10 $f_e = 8.89$ $(f_e - f_o)^2 = 1.23$.138	5 f _e = 6.67 (f _e -f _o) ² =2.79 .418	5 f _e = 8.89 (f _e -f _o) ² =15.13 1.702	40
	35	20	15	20	90
12:9:2005 P766 Non-narametrie stutistics 31					

4. Compute
$$\chi^2 = \Sigma\left(\frac{(f_e - f_o)^2}{f_e}\right)$$

 $\chi^2 = 6.363$ What is the critical value?
df = (r-1)(c-1) What is your conclusion?
What is your conclusion?

Kool Facts About Chi-Square

- χ^2 values range from a low of 0, no difference, to higher values as the difference between f_o and f_e become larger.
- Degrees of freedom are based on the <u>number of</u> <u>cells</u>, not number of people.
- For complex contingency tables χ^2 does <u>not</u> indicate which cells are highly different. *Post hoc* tests have to be done to identify the differences.
- $\chi^2 \, \text{does} \, \underline{\text{not}}$ give an indication as to how strong a relationship is.

$\triangleleft \Diamond \triangleright$

Types of Chi-square

- 1. One-way chi-square.
 - Single variable with multiple categories.
 - Preference for car models.
 - Choice of computer models.
 - Compares the distribution of scores against a standard.
 - Equal distribution of scores.
 - A priori distribution of scores.
 - Referred to as 'Goodness of fit'.
 - Similar to the One-way ANOVA.

 $\triangleleft \Diamond \triangleright$

Types of Chi-square

2. Independent Samples

- Two or more variables.
 - School dropouts by ethnic group.
 - Gender of rider by order of finish in a horse race.
- Called: Test of Independence.
- Similar to factorial ANOVA.

< 🚺 🕨

Types of Chi-square

- 3. Correlational surrogate.
 - Detect a relationship between nominal variables.
 - Single sample is measured on two variables.
 - Classified into the groups on each variable.
 - Examples.
 - Personality type by class quartile.
 - Type of drug abused by family marital status.

χ^2 Assumptions

- 1. The observations are independent; each observed frequency is generated by a different subject.
- 2. The observed cell frequencies are greater than 5.

