

t-test vs	ANOVA VS. Γ	MANOVA
Test	Number of independent variables	Number of dependent variables
t- test	One	One
ANOVA	Multiple	One
MANOVA	Multiple	Multiple

Corre	lational Exa	mples
Test	Number of predictors	Number of criterion variables
Simple Correlation	One	One
Multiple Regression	Multiple	One
Canonical Correlation	Multiple	Multiple
10/26/2002	P766 MANOVA	

- 1. From a validity point of view, multiple dependent measures are better than a single dependent measure.
- 2. A strong treatment will affect people in many ways.
- 3. It is more efficient to do one study assessing the impact of the independent variable(s) three things than three studies assessing their impact on one thing.

Benefits of MANOVA

- 1. Opportunity to use multiple measures.
- 2. May not find differences between two correlated dependent variables if assessed in separate studies.
- 3. Multiple ANOVAs will lead to inflated Type I error rate.

Correcting the Alpha Level Conducting multiple ANOVAs increases the probability of a Type 1 Error. To correct divide " by the number of dependent variables. This equalizes the probability across the variables. This is called the *Bonferroni* adjustment.

Bonferroni Example

If there are two dependent variables, then the Bonferroni corrected level would be .05/2 or .025.

Comparing: ANOVA vs. MANOVA

$$ANOVA$$
: $SS_{Total} = SS_{Between} + SS_{Within}$
 $MANOVA$: $SSOP_{Total} = SSOP_{Between} + SSOP_{Within}$
 $T = B + W$

Design						
	Mild		Moderate		Severe	
	WRAT-R	WRAT-A	WRAT-R	WRAT-A	WRAT-R	WRAT-A
Treatment	106.6	103.6	100.0	99.3	93.0	86.0
Control	85.0	89.3	76.6	76.7	72.3	68.3

Source	Wilks' Lambda	Df ₁	Df ₂	F
Treatment	.13772	2	11	34.43**
Disability	.25526	4	22	5.38*
тхр	.90807	4	22	.27

		Step 2. ANOVA				
r i i i i i i i i i i i i i i i i i i i						
	SS	df	MS	F		
Treatment						
WRAT-R	2090.88	1	2090.88	46.1		
WRAT-A	1494.22	1	1494.22	33.2		
Disability						
WRAT-R	520.77	2	260.38	5.7		
WRAT-A	1126.77	2	563.38	12.5		
ТХО						
WRAT-R	2.11	2	1.056	.023		
WRAT-A	52.78	2	26.38	.587		
Error						
WRAT-R	544.00	12	45.33			
	530 33	40	44.04			

