
\qquad
\qquad
\qquad
\qquad
\qquad

What We Will Cover in This Section

- Introduction.
- Logic of hypothesis testing.
- Errors.
- Types of hypothesis tests.
- Tails of Tales.

266Hvoluesis Testin

What is hypothesis testing?

A set of logical and statistical guidelines used to make inferential decisions from sample statistics to population characteristics. \qquad
\qquad

Types of Hypotheses

- Research hypothesis.
- Logical hypotheses.
- Null hypothesis (H_{o}).
- Alternative hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right.$.
- Statistical hypothesis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad antuorastay \qquad

Research Hypothesis

Statement in words as to what the investigator expects to find.

Example.

Students who drink caffeine will be able to memorize information faster than students who do not drink caffeine.

66 Hvoolesesi Testin

Logical Hypotheses

Null Hypothesis $\left(\mathrm{H}_{0}\right)$.
Statement that the treatment \qquad does not have the expected effect.

Alternative Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$. Statement that the treatment had the expected effect.
\qquad
\qquad
\qquad
\qquad

Characteristics of the Logical Hypotheses

1. They are mutually exclusive.
2. They are mutually exhaustive.

?

Caffeine Example

H_{0}
Students who drink caffeine will not be able to memorize information faster than people who do not drink caffeine.

- Non-caffeine and caffeine drinkers are the same.
- Non-caffeine drinkers are faster.
- H_{a}

Students who drink caffeine will memorize information faster than those who do not drink caffeine.

Tam

Statistical Hypotheses
Statement in statistical (mathematical) terms as to what \qquad would be found if the alternative hypothesis is true. \qquad
Example.

$$
\begin{aligned}
& M_{a}>M_{b} \\
& M_{a}>M_{b} \text { or } M_{a}<M_{b}
\end{aligned}
$$

$\mathbf{H}_{\mathbf{a}}: \mathbf{M}_{\text {caffeine }}<\mathbf{M}_{\text {no caffeine }}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Decision Making Criteria

1. Since we are dealing with sampling error there is always a possibility that differences we find could have happened by chance.
2. We make statistical inferences based on the probability that the results may or may not have happened by chance.
3. Our model for making this decision is founded on the normal distribution.

66 Hvothesis Testin

Decision Steps

1. We start by assuming that the Null Hypothesis is true.
2. When a statistical result is rare we conclude that it probably did not happen by chance.
3. If we conclude that a result did not happen by chance (e.g. it is rare), we reject $\mathrm{H}_{\text {. }}$.
4. The only option is to conclude that the true state of affairs is represented by H_{a}.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Tale of Tails, Review
One-tailed test.
Researcher makes a prediction that one group will be bigger than the other.

Two-tailed test.
Researcher makes a prediction that the groups will be different, but does not state which will be bigger.

A Tale of Tails, Review

Above what z-score do 5\% of the cases fall? $(\alpha=.05)$	1.64
Below what z-score do 1\% of the scores fall? $(\alpha=.01)$	-2.33
Between which two z-scores do 95% of the cases fall? $(\alpha=.05)$	± 1.96
Between which two z-scores do 99% of the cases fall? $(\alpha=.01)$	± 2.58

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Learning Points \#1

1. Science is conservative.
2. We assume that the research hypothesis is invalid until the evidence is so strong that we must conclude that it is true.
3. We statistically 'test' the assumption that the research hypothesis is not true.
4. If the data are so strong that we believe that they could not have happened by chance, then we reject H_{o}.

Key Learning Points \#2
5. Since our decisions are based on probability theory not absolute surety, we can make mistakes.
6. The probability of concluding that the research hypothesis is correct when it isn't (rejecting Ho when it is true) is represented by alpha (α).
7. The probability of failing to find a result when there is one is represented by beta (β).

