

Goals of Factor Analysis

- 1. Summarize patterns of correlations among observed variables.
- 2. Reduce a large number of observed variables to a smaller number of interpretable groups.
- 3. Provide an operational definition (regression equation) for an underlying process.
- 4. Test a hypothesis about the nature of underlying processes.

	Input::Output	;
Input	Intermediate	Output
Correlation Matrix	Initial Components	Rotated Factor Loadings
What variables. How many variables.	Type of analysis. Number of factors.	How to rotate. Interpretation of
How many subjects. Variable relationships.		Stability of factors.

Factor Analysis Example

Izzy Wright was interested in examining the qualities that attracted students to a college. Wright designed a survey that he administered to a random sample of high school seniors. The survey assessed four variables: Campus SAFETY, Variety of campus ACTIVITIES, Number of MAJORS, and FACULTY quality.

		Data		
	Safety	Activities	Major	Faculty
S1	32	64	65	67
S2	61	37	62	65
S3	59	40	45	43
S 4	36	62	34	35
S 5	62	46	43	40

Input Correlation Matrix						
11	input Conciation Matrix					
		1				
	Safety	Activities	Majors	Faculty		
Safety	1 00	- 953	- 055	- 130		
Garcey	1.00	000	000			
Activities	- 953	1 00	- 091	- 036		
Activities	000	1.00	001	000		
Maiors	- 055	- 019	1 00	990		
			1.00			
Faculty	- 130	- 036	990	1 00		
racuity	100	000	.550	1.00		
10/12/2002	Ţ					

Extraction

The mathematical process by which the factors are determined from an larger set of variables.

Factor Extraction Techniques

4 • •

- 1. Principal Components. Goal is to examine all of the variability to extract the most variance with fewest possible factors.
- 2. Factor Analysis. Goal is to examine only the variability that the variables have in common. Want remove unique and error variability.

<

Factor Analysis

- Attempts to analyze the structure with random error removed.
- Places shared variance estimates in the main diagonal.
- Assumption is that the Factors cause the variables.
- *N.B.* there is a variety of *Factor Analysis* techniques.

Comments on Extraction Technique

- With strong data, all produce essentially the same factors.
- None of the approaches provides an interpretable solution without rotation.
- 'Data snooping' is common in an attempt to develop interpretable factors.

Eigenvalue.

- The total amount of variance explained by an individual factor.
- The variance has been standardized so S and $S^2 = 1$.
- Thus, total variability in the analysis is equal to <u>k</u> or the number of variables in the analysis.
- In Eigenvalue analysis only components with values equal to or greater than 1 (10% of the variance) should be kept.

- The horizontal axis represents the eigenvalue of the component.
- Look for the point where the Scree Plot levels off. This is usually the place where additional components have relatively small eigenvalues.

<

total variance.

 Problem
If there are weak correlations, it may take 20 out of 24 variables to account for your target variability.

predicted by the model.

Examp	le Comm	unalities
	Initial	Extraction
Safety	1.00	.983
Activity	1.00	.983
Majors	1.00	.995
Faculty	1.00	.997

Factor Rotation

Process by which a factor solution (initial component set) is made more interpretable without altering the underlying mathematical structure.

4 +

Con	nponent M	atrix	
	Component		
	1	2	
Safety	500	.856	
Activity	.357	925	
Majors	.891	.449	
Faculty	.919	.390	

Orthogo	onal Rotated Matr	Factor Loa	ading	
	Comp	onent]	
	1	2		
Safety	087	988 <	Factor Loading	
Activity	072	.989		
Majors	.997	025		
Faculty	.998	040	1	

Factor Score

The estimates of the score a subject would have received on each factor had they been measured on the factors directly.

< + >

Potential Issues With Factor Analysis

- 1. There is no external criterion against which to verify the solution.
- 2. There is an infinite number ways to rotate the factors all accounting for the same amount of variance.
- 3. Factor analysis is sometimes used to 'resurrect' poorly implemented research.

