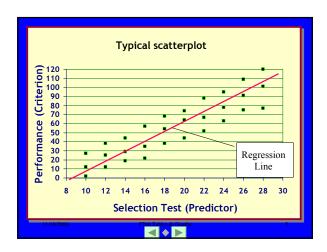

Graduate Statistics Correlation and Regression

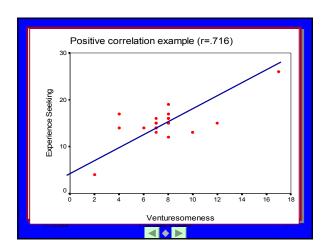
What Correlational Statistics Do 1. Assess the strength of the relationship between two or more

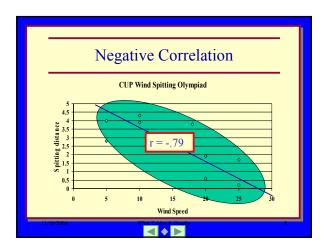
- 2. Determine the direction of the relationship.
 - Positive.

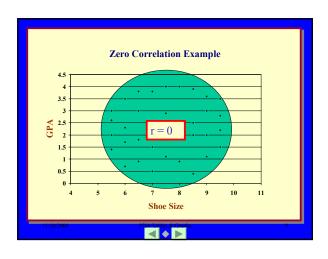
variables.

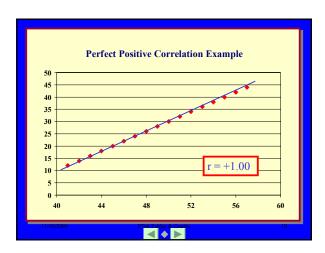

- Negative.

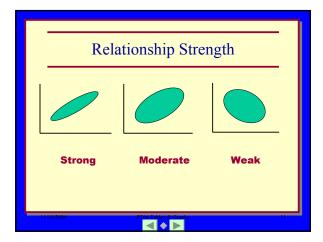
11/10/2006




,		
•		
•		
,		
,		






The Null Hypothesis There is no relationship between the variables $\rho = 0$

The Correlation Coefficient

- · Indicated by r.
- Ranges from -1.00 to +1.00
 - The number indicates the strength of the relationship.
 - The sign indicates whether the relationship is positive or negative.
- · Does NOT indicate causality.

Where Simple Correlations are Used

- 1. Prediction.
- 2. Validation studies.
- 3. Reliability studies.
- 4. Theoretical studies.
- 5. Identification of surrogate variables.

11/10/2006

/bb Tables & Gran

General Model

 $\frac{\text{Degree to which X and Y covary}}{\text{Variability of X and Y separately}}$

 $r = \frac{\text{Shared variability}}{\text{Variability of X and Y separately}}$

P766 Tables & Grapt

Definitional Formula

$$r = \frac{\Sigma \left(Z_x \ x \ Z_y \right)}{N}$$

11/10/2006

$$r = \frac{N(\sum_{i=1}^{n} X_{i} Y_{i}) - (\sum_{i=1}^{n} X_{i})(\sum_{i=1}^{n} Y)_{i}}{\sqrt{N(\sum_{i=1}^{n} X_{i}^{2}) - (\sum_{i=1}^{n} X_{i})^{2} \times N(\sum_{i=1}^{n} Y_{i}^{2}) - (\sum_{i=1}^{n} Y_{i})^{2}}}$$

An equation you don't need to know.

P/66 Tables & Grap

The Significance Test for r

- H_0 : $\rho = 0$
- H_a: ρ ≠ 0
- df = N 2

Note: N is the number of **pairs** of scores.

• See Table B6, page 709.

006

FIAT

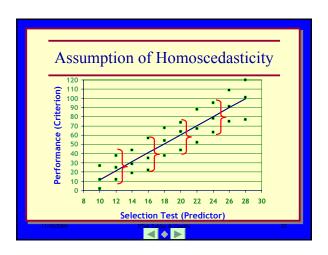
	Height	Hand	Zheight	Zhand	
	70	9.25	1.59	1.81	2.88
	65	8	-0.02	0.32	-0.01
	66	7.75	0.30	0.02	0.01
	70	8.25	1.59	0.62	0.98
	63	8	-0.66	0.32	-0.21
	62	6	-0.98	-2.08	2.04
	62.5	7.75	-0.82	0.02	-0.01
	61	7	-1.30	-0.88	1.15
	66	7.625	0.30	-0.13	-0.04
Mean	65.06	7.74			0.75
SD	3.11	0.83			

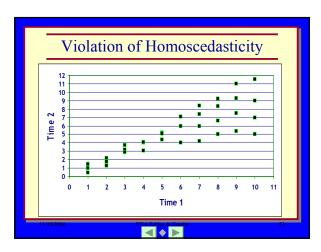
r and Effect Size

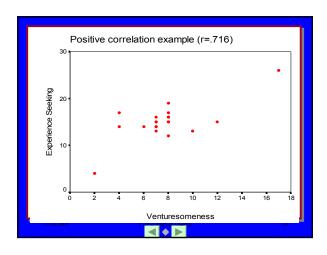
Coefficient of Determination: r2

Represents the amount of **shared variance** between the two variables.

Coefficient of Alienation: $1 - r^2$


Represents the amount of variance that is **not shared**.




Assumptions When Using the Pearson Correlation Coefficient

- 1. The relationship is linear.
- 2. Interval or ratio measurement scale.
- 3. Homoscedasticity.
- 4. The distribution is continuous.
- 5. There is no restriction of range.
- 6. The distribution is normal.



Consequences of Restriction of Range					
	Unrestricted		Restricted		
	Experience Seeking	Venture- someness	Experience Seeking	Venture- someness	
Mean	15.00	7.65	15.00	7.44	
Standard Deviation	3.90	3.05	1.68	1.82	
Correlation	r = .716		r =058		
11/10/2006 P766-Tables & Granhs 25					

Regression

Statistical technique using the correlation coefficient to make predictions about one variable based on its relationship with one or more other variables.

Regression Formula

$$\hat{Z}_{y} = r(Z_{x})$$

11/10/2006

Residual

This is the error in prediction and represents the amount of variance not accounted for in prediction.

766 Tables & Grapi

Standard Error of Estimate (SE_{est})

$$SE_{est} = \sqrt{\frac{\sum (\hat{Y} - Y)^{2}}{N - 1}}$$

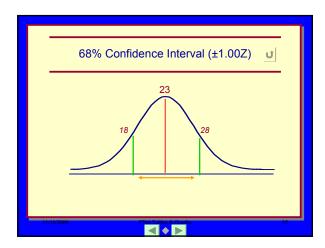
Represents the standard deviation of the error in predicting Y from X in regression.

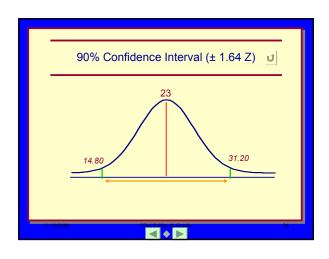
11/10/2006

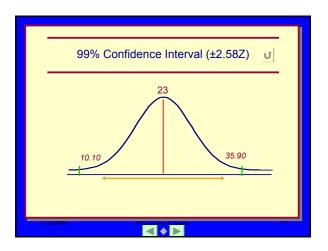
SE_{est} Computational Formula


$$SE_{est(y)} = SD_y \sqrt{1 - r_{xy}^2}$$
$$SE_{est(x)} = SD_x \sqrt{1 - r_{xy}^2}$$

$$SE_{est(x)} = SD_x \sqrt{1 - r_{xy}^2}$$


Use of the Standard Error of Estimate


- When r² does not equal 1.00 there will be some error in our predictions.
- · The standard deviation in the error of our predictions is represented by SE_{est}.
- SE_{est} gives a way to determine the range where a predicted score will most likely fall and the probability that the score will fall within this range.


/66 Tables & Grap

Confidence Intervals				
Computing the confidence intervals when Y' = 23 , r=.70, and SD_y = 7				
Confidence Interval	SE _{est}	±(SE _{est} x Z)	Range	
68% ±1.00Z	± 5.00	± 5.00	18.00 - 28.00	
90% ±1.64Z	± 5.00	± 8.20	14.80 - 31.20	
99% ±2.58Z	± 5.00	± 12.90	10.10 - 35.90	
11/10/2006	P7/	66 Tables & Graphs	34	

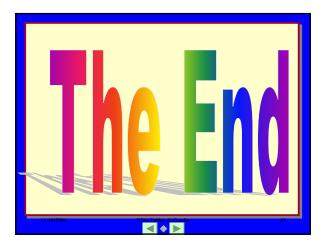
Influence of Increasing r on SE_{est} (SD = 10)

r	r²	SE _{est}
.90	.81	4.35
.80	.64	6.0
.70	.49	7.1
.60	.36	8.0

/66 Tables & Grap

Key Learning Points

- 1. The correlation coefficient assesses the strength and direction of the relationship between two or more variables.
- 2. The correlation coefficient is sensitive to the variability in the sample.
- 3. One cannot infer causality from examining the correlation coefficient.
- 4. The effect size can be assessed by r².


10/2006 P766 Tables of

Key Learning Points, cont.

- 5. There will always be error in predicting one variable from another.
- 6. The degree of error is directly related to the strength of the correlation between the two variables.

11/10/2006

766 Tables & Grant

