

What We Will Cover in This Section

- Introduction.
- The Z-test review.
- · Other problems.

Application: The Z-test

The average age of registered voters in Slippery Gulch is μ = 39.7 years old and the standard deviation, σ , is 10.

The League of Women Voters wanted to encourage younger people to vote so they sponsored a series of educational articles and television commercials on the benefits of voting.

Afterwards, a sample of 12 voters at the latest election was found to have a mean age of 28.2 years.

Did the advertising have an effect on voters or could this result have been a result of random error?

Decision Issues

- How do you determine far away?
 - What measure do we have to determine how far away a sample mean is from the population mean?
- How do we determine if this mean is rare?

- What is rare?

The Z-Test Formula $Z = \frac{\overline{X} - \mu}{\sigma_{\overline{X}}}$

Properties of the Z-test

- What you can learn. Does a sample mean (M) differ significantly from a population mean (µ) or could this difference have occurred by chance.
- Assumptions.
 Interval or ratio scales.
 - Know μ and $\sigma.$
 - Know the sample mean.
 - Know the sample size.

ALPHA Level (α)

- ALPHA is the statistical statement of something that is rare.
 - Traditionally, *alpha* is defined as something that would happen 5% of the time or less.
 - This is shown by: p < .05.

Critical Values for α

Critical Value	Type of test		
	One tail	Two tailed	
.05	1.64	1.96	
.01	2.33	2.58	
	P766 Comparing Two Mean		

Example #2

Melody Tunne thought that listening to music while taking a statistics test would either be relaxing, increasing performance, or distracting, decreasing performance. She did not know which.

- 1. Is this a one-tail or two-tail test?
- 2. What alpha level should Melody set?

Melody's Data

- The mean for the population of students who have taken the statistics test is µ = 50.
- The standard deviation for all students is σ = 12.
- Melody got a sample of 49 students who listened to music while taking the test.
 - Their mean was 54.63
 - Their standard deviation was 7.

