

Application: The Z-test

The average age of registered voters in Slippery Gulch is μ $=39.7$ years old and the standard deviation, σ, is 10 .

The League of Women Voters wanted to encourage younger people to vote so they sponsored a series of educational articles and television commercials on the benefits of voting.
Afterwards, a sample of 12 voters at the latest election was found to have a mean age of 28.2 years.

Did the advertising have an effect on voters or could this result have been a result of random error? \qquad 4—1 \qquad

The Statistical Model, Again
\qquad

How to Think About This

Could a sample with a mean of 28.2 have occurred in a distribution where the mean is 39.7 and the standard deviation is $10 ?$
\qquad
Does the sample with $M=28.2$ represent a different population? \qquad
What distinguishes this 'different' population would be the commercials. \qquad

Decision Issues

- How do you determine far away?
- What measure do we have to determine how far away a sample mean is from the population mean?
- How do we determine if this mean is rare?
- What is rare?
The Z-Test Formula

$$
Z=\frac{\bar{x}-\mu}{\sigma_{\bar{X}}}
$$

\qquad
\qquad
\qquad

How to Compute, Step \#1

1. Determine the critical value for a one-tail test where $\mathrm{p}<.05$.
\qquad
\qquad

How to Compute, Step \#2
2. Calculate the standard error.

$$
\begin{aligned}
& \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{N}} \sigma_{\bar{X}} \\
&=\frac{10}{\sqrt{12}} \\
& \sigma_{\bar{X}}=\frac{10}{3.464} \\
& \sigma_{\bar{X}}=2.89
\end{aligned}
$$

How to Compute, Step \#3

3. Calculate how far the sample mean is from the population mean in SE units.
$Z=\frac{\bar{X}-\mu}{\sigma_{\bar{X}}} \quad Z=\frac{28.2-39.7}{2.89}$

$$
Z=-3.98
$$

How to Compute, Step \#4
4. Compare the Z-score to the critical value.

Properties of the Z-test

- What you can learn.

Does a sample mean (M) differ significantly from a population mean (μ) or could this difference have occurred by chance.

- Assumptions.
- Interval or ratio scales.
- Know μ and σ.
- Know the sample mean.
- Know the sample size.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

ALPHA Level (α)

- ALPHA is the statistical statement of something that is rare.
- Traditionally, alpha is defined as something that would happen 5% of the time or less.
- This is shown by: $\mathrm{p}<.05$.
\qquad
\qquad
\qquad

Critical Values for α

Critical Value	Type of test	
	One tail	Two tailed
.05	1.64	1.96
.01	2.33	2.58

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example \#2

Melody Tunne thought that listening to music while taking a statistics test would either be relaxing, increasing performance, or distracting, decreasing performance. She did not know which.

1. Is this a one-tail or two-tail test?
2. What alpha level should Melody set?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Melody's Data

- The mean for the population of students who have taken the statistics test is $\mu=50$.
- The standard deviation for all students is $\sigma=$ 12.
- Melody got a sample of 49 students who listened to music while taking the test.
- Their mean was 54.63
- Their standard deviation was 7.
\qquad

