

Mean

- Sum the scores and divide by the number of scores.
- Symbols
- Sample: M or X
- Population: μ
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defining Formula

$$
M(o r \bar{X})=\frac{\sum x}{N}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Properties of the Mean

1. Algebraic center of the distribution.
2. Sensitive to each score in the distribution.
3. Sensitive to extreme scores.
4. Most stable measure, resists sampling fluctuation.
5. Used in some form or other in almost all other statistical procedures. \qquad
\qquad

Strange Property of the Mean
$\sum\left(X-M_{X}\right)=0$
\qquad
\qquad

Demonstration: $\overline{\mathrm{X}}=7.5$

Score	$\mathrm{X}-\mathrm{M}_{\mathrm{X}}$
4	-3.5
5	-2.5
6	-1.5
7	-.5
8	.5
9	1.5
10	2.5
11	3.5
60	$?$

\qquad
\qquad

Deviation Score

Difference between the mean and a raw score.

```
X - M X
```

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assumptions

1. Measurement on interval or ratio scale.
2. Best used when the distribution is normal. \qquad
\qquad
\qquad

Key Learning Points

- The mean is the best estimator of any score in a distribution.
- The deviation score indicates the amount of error in this prediction.
- The sum of the deviation scores always equals zero.
- The sample mean, M, is used to estimate the population parameter, μ.

Median

- The score below which 50% of the scores fall.
- Represents P_{50}.
- Divides the distribution in half.
- Symbol.
- Sample: Mdn
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

8	9	10	11	12	13	14	15	16
8	9	10	11	12	13	16	16	46

\qquad
\qquad
\qquad

Properties

1. Sensitive to the number of scores that fall above it and below it but not their values.
2. Relatively insensitive to extreme scores in skewed distributions.
3. Next best in resisting sampling fluctuations.
4. Best used when there are skewed distributions.
5. Only choice when there are open-ended distributions.
\qquad
6. Not much use in higher level statistics.

Assumptions

1. Data are measured on an ordinal scale or higher.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mode
\qquad
\qquad

- The score that occurs most frequently in a distribution. \qquad
- Used for nominal scales or higher.
- Symbol.
- Sample: Mo \qquad
\qquad
\qquad

Properties

1. Easy to compute.
2. OK for rough approximations of the 'typical' score.
3. Least stable score, highly sensitive to sampling error.
4. May be more than one mode.
5. Ignores much numerical information.
6. Little use beyond descriptive level. \qquad

4-1 \qquad

