

Defining Formula
$$M(or\overline{X}) = \frac{\sum x}{N}$$

Properties of the Mean

- 1. <u>Algebraic center</u> of the distribution.
- 2. Sensitive to each score in the distribution.
- 3. Sensitive to extreme scores.
- 4. Most stable measure, resists sampling fluctuation.
- 5. Used in some form or other in almost all other statistical procedures.

Strange Property of the Mean

$$\sum (X - M_X) = 0$$

D	emonstrat	ion: $\overline{\mathbf{X}} = \mathbf{x}$	7.5			
	Score	X - M _X	1			
	4	-3.5				
	5	-2.5				
	6	-1.5				
	7	5				
	8	.5				
	9	1.5				
	10	2.5				
	11	3.5				
	60	?				
9/4/2005 P766 Tables & Granhs 9						

Assumptions

- 1. Measurement on interval or ratio scale.
- 2. Best used when the distribution is normal.

Key Learning Points

- The *mean* is the best estimator of any score in a distribution.
- The *deviation score* indicates the amount of error in this prediction.
- The sum of the *deviation scores* always equals zero.
- The sample mean, M, is used to estimate the population parameter, µ.

Median

- The score below which 50% of the scores fall.
- Represents P₅₀.
- Divides the distribution in half.
- Symbol.
 - Sample: Mdn

Example									
8	9	10	11	12	13	14	15	16	
8	9	10	11	12	13	16	16	46	
9/4/20)05			766 Tables &	Graphs				

Properties

- 1. Sensitive to the number of scores that fall above it and below it but not their values.
- 2. Relatively insensitive to extreme scores in skewed distributions.
- 3. Next best in resisting sampling fluctuations.
- 4. Best used when there are skewed distributions.
- 5. Only choice when there are open-ended distributions.
- 6. Not much use in higher level statistics.

$\triangleleft \diamond \triangleright$

Mode

- The score that occurs most frequently in a distribution.
- Used for nominal scales or higher.
- Symbol.
 Sample: Mo

Properties

- 1. Easy to compute.
- 2. OK for rough approximations of the 'typical' score.
- 3. Least stable score, highly sensitive to sampling error.
- 4. May be more than one mode.
- 5. Ignores much numerical information.
- 6. Little use beyond descriptive level.

$\triangleleft \diamond \triangleright$

