Research Methods (P365)

Experimental Validity

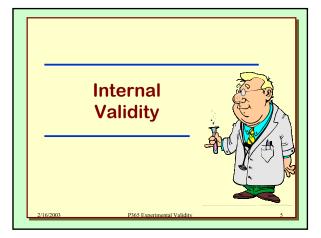
2/16/2003 P365 Experimental Validit

What We Will Cover in This Section

- Overview
- Internal Validity.
- External Validity.
- Key Learning Points.

2/16/2003

P365 Experimental Validity


Validity Revisited

- In the context of measuring variables, validity implies that you are measuring what you say you are measuring.
- In the context of research methods, validity focuses on the extent that you can make <u>appropriate inferences</u> based on the research design and implementation.

2/16/2003

55 Experimental Validit

Traditional l	Experimental Design
Independent Variable	Dependent Variable
Group A	Common outcome
Group B	measure.
2/16/2003 P.	365 Experimental Validity 4

Internal Validity

- Refers to
 The <u>accuracy</u> of the research in <u>determining</u> the <u>relationship</u> between the <u>independent</u> and <u>dependent</u> variables.
 - Applies to experimental research.
 - Can I unambiguously conclude that the independent variable caused a change in the dependent variable.

16/2003 P365 Experimental Validity

Confounding

Any variable other than the independent variable that could reasonably have caused changes in the dependent variable.

2/16/2003

55 Experimental Validit

Confounding Variable: Example Dependent Independent Variable Variable Confounded Given orange by time of juice in the **Alertness** day. morning two hours Given distilled later. water in the evening

Natural Confounding

The typical association of one variable with another.

- Race
- Gender
- Age
- Culture

2/16/2003

5 Experimental Valid

Treatment Confounding

The independent variable is associated with some other variable for ONE condition.

- Female experimenter in one condition and male in another.
- Cool Pepsi vs. warm Coke.
- Group A at 10:00, Group B at 12:00.

2/16/2003

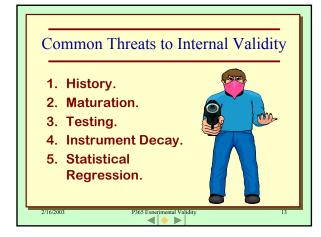
65 Experimental Validity

Measurement Confounding

The measure assesses more than one construct (construct validity).

- Depression is usually associated with anxiety, so any measures of depression will also assess anxiety.
- Leadership vs. assertiveness
- Verbal intelligence vs. Vocabulary

2/16/2003

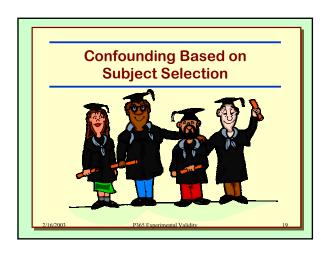

65 Experimental Validity

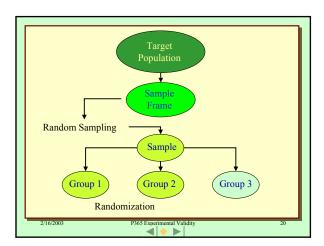
Design Confounding

Typically caused by lack of an appropriate control group.

2/16/2003

xperimental Validity


1. History Any event that occurs between the first and second dependent measures that is not manipulated by the experimenter. Pre-test Treatment Post-test Pre-test Delay Post-test


2. Testing Participation in the pre-test may cause changes in the person. - Reactivity - Memory Pre-test Treatment Post-test Treatment Post-test Pre-test Delay Post-test Pre-test Delay Post-test

3. Maturation Changes in the individual over time that are not associated with the independent variable. Treatment Delay Post-test Placebo Delay Post-test

4. Instrument Decay Changes in the measuring instrument over time. • Observer gets bored. • Test becomes obsolete. • Machine wears out. Pre-test Treatment Post-test Treatment Post-test

5. Statistical Regression Occurs when participants are placed into groups based on extreme scores. Extreme scores tend to move(regress) toward the mean. Pre-test Treatment Post-test Pre-test Delay Post-test

Key Assumption

In experimental research there is RANDOM SELECTION from the population (sample frame) and RANDOM ASSIGNMENT to treatment conditions.

2/16/2003 P365 Experimental Validity 21

Selection Bias

- 1. When participants are not randomly selected from the population, this limits generalizability (External Validity).
- 2. When participants in one condition differ in some way from those in another condition you have confounding (Internal Validity).
 - Non-random assignment
 - Pre-existing groups.
 - Differential mortality.

2/16/2003

65 Experimental Validity

Measurement Reactivity

- 1. Evaluation apprehension.
 - Avoid feedback.
 - Watch labeling.
- 2. Novelty effects.
 - Give participants time to adjust.
- 3. Response bias.
 - Social desirability.
 - Negative or positive response bias.

2/16/2003

5 Experimental Validi

Demand Characteristics

- Cues in the research setting that allow the participant to form their own opinions about the research hypothesis.
 - The Good participant.
 - The Negative participant.
 - The Apathetic participant.

2/16/2003

P365 Experimental Validity

Controlling for Demand Characteristics

- 1. Cue reduction.
- 2. Motivation.

Reduce evaluation apprehension.

3. Separate the dependent variable from the study (unobtrusive).

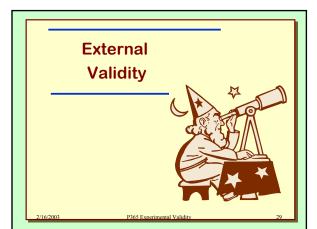
2/16/2003

365 Experimental Validity

Experimenter Reactivity

- 1. Biased observation.
- 2. Influencing participants' responses.

2/16/2003


365 Experimental Validit

Reducing Experimenter Effects

- 1. Rehearsal.
- 2. Monitoring.
- 3. Minimize experimenter influence.
- 4. Use double blind.
- 5. Minimize data snooping.

2/16/2003

Experimental Validity

External Validity

The extent to which research results can apply to a wide range of situations.

2/16/2003

5 Experimental Validi

Assessing External Validity

- This is judgmental based on an assessment of all of the factors.
 - Are field and laboratory results similar.
 - Are field conclusions similar to laboratory conclusions.
 - Does a phenomenon exist in both the laboratory and the field.

2/16/2003

65 Experimental Validity

Key Learning Point

Internal validity is a prerequisite for external validity.

2/16/2003

P365 Experimental Validity

