

What We Will Cover in This Section

- Overview.
- Basic requirements.
- Between subjects designs.
- Within subjects designs.
- Factorial designs.
- Pre-experimental designs.

Exameman Dosimen \qquad

Basic Requirements, Review

- Two or more groups.
- Participants randomly assigned to treatment conditions.
- One or more treatment conditions.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

	Basic Design	
	Independent Vreatment Groups	Dependent Variable
Group 1	Treatment (s) controlled by the experimenter	Measurement(s) made after the treatments are applied.
Group 2		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4." \qquad

Treatment Groups

Experimental Group

Group that gets some level of the treatment being studied. \qquad
Control Group
Group in the study that does not get the experimental treatment.

Comparison Group

Group in the study that gets some alternative level of the experimental treatment.

Characteristics of Good Treatments

- Valid.
- Reliable.
- Strength
- Multiple levels.
- Right levels.
- Right strength.
- Salient.
- Multiple stimuli.
\qquad
\qquad

Field Research Example

- In 1984 Pittsburgh National Bank had a problem with their tuition reimbursement program.
- They were paying tuition and fees for employees seeking bachelors degrees.
- Approximately 45% of the people did not want to work in the field in which they majored.
- The bank was prepared to scrap the program.

Experimental Desien, \qquad

Evaluation Design		
	Independent Variable	Dependent Variable
Experimental Group	342 people who attended workshop	Job posting Applications 70\% Promotions: 12\% Salary/grade change: 91%
Control Group	450 people who did not attend the workshop.	Job posting Applications 23\% Promotions: 3\% Salary/grade change: 66\%

\qquad

Basic Elements

- Two or more treatment conditions. \qquad
- Subjects exposed to only one treatment condition and one treatment level.
\qquad
\qquad
\qquad

Randomized Post-test Only Control Group

	Independent Variable	Dependent Variable
ss_{1}	Treatment 1	Measure
ss_{2}		
ss_{3}	Measure	
ss_{4}	Treatment 2	Ms
ss_{5}	Ss_{6}	

Randomized Pre-test Post-test Control Group			
	Pre-test	Independent Variable	Post-test
SS SS_{2} SS_{3}	Measure A	Treatment 1	Measure A
SS SS_{5} SS	Measure A	Treatment 2	Measure A

Exnerimental Desien, Part 2 $\quad 13$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Matched Random Assignment		
	Independent Variable	Post-test
$\begin{aligned} & \hline \mathrm{SS}_{1 \mathrm{~A}} \\ & \mathrm{SS}_{2 \mathrm{~B}} \\ & \mathrm{SS}_{3 \mathrm{C}} \\ & \hline \end{aligned}$	Treatment 1	Measure A
SS 4A $S S_{5 B}$ S_{56}	Treatment 2	Measure A

Within Subjects Design		
	Independent Variable	Post-test
SS SS_{2} ss_{3}	Treatment 1	Measure A
SS_{1} SS_{2} SS_{3}	Treatment 2	Measure A
SS_{1} SS_{2} SS_{3}	Treatment 2	Measure A

Example		
Independent Variable ss_{1} Ss_{2} Ss_{3} Milk Chocolate Post-test ss_{1} Ss_{2} ss_{3} German Chocolate Preference Ss_{1} Ss_{2} Ss_{3} Dark Chocolate Preference		

Benefits and Issues

Benefits.

1. Fewer participants.
2. Reduce subject variability.

Order effects.

1. Practice effect.
2. Fatigue effect.
3. Carryover effect.
4. Sensitization effect (demand characteristics).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Counterbalancing

- Varying the order of the presentation of the independent variable. \qquad
- Full counterbalancing.
- Issue here is the number of possibilities is N!.
- Randomized blocks. \qquad
\qquad
\qquad

Counterbalancing

	Trial 1	Trial 2	Trial 3
S1	Milk Chocolate	German Chocolate	Dark Chocolate
S2	Dark Chocolate	Milk Chocolate	German Chocolate
S3	German Chocolate	Dark Chocolate	Milk Chocolate

\qquad
\qquad
\qquad
\qquad
\qquad
\square^{2} ム『

Multiple Variable (Factorial) Designs
\qquad
\qquad
\qquad
\qquad 1 \qquad

Factorial Design

> A design in which participants are exposed to two or more treatments.

Main Effect
The influence that one variable alone
has independently of the other
variables.
Interaction
The influence that two or more
variables together have on the
dependent variable over and above
their main effects.

\qquad

Uses of Factorial Designs

1. Testing for moderator effects.
2. Are there order effects.
3. Controlling extraneous variables. \qquad
\qquad
\qquad

Ex Post Facto Approach

	Independent Variable	Dependent Variable
Group 1	Groups divided based on some pre-existing Group 2	Measurement(s) made after the assignment to groups.

\qquad
\qquad
\qquad
\qquad
\qquad
$\xrightarrow{\text { Experimental Desian, }}$ \qquad

Example

An experimenter wanted to see if more women than men were whistle blowers in industry. The researcher looked though fifty business journals and magazines and tabulated the gender of the whistle blowers for the past ten years. \qquad
\qquad
\qquad

Benefits and Issues

Benefits.

1. May be the only way to study some influences.
2. May be OK for preliminary research.

Issues.

1. Ss not randomly assigned to treatment conditions.
2. If a person is unusual on one characteristic he may be unusual on others.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Threats to Internal Validity

1．History．
2．Maturation．
3．Testing．
4．Instrument Decay．
5．Statistical Regression．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1．History

Any event that occurs between the first and second dependent measures \qquad that is not manipulated by the experimenter．

Treatment	Delay	Post－test

\qquad － \qquad

2．Testing
Participation in the pre－test may cause changes in the person． \qquad
－Reactivity
－Memory

Pre－test	Treatment	Post－test
	Treatment	Post－test
Pre－test	Delay	Post－test

\qquad
\qquad
\qquad
び・

3. Maturation

Changes in the individual over time that are not associated with the independent variable.

Treatment	Delay	Post-test
Placebo	Delay	Post-test

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad - - \qquad

4. Instrument Decay

Changes in the measuring instrument over time. \qquad

- Observer gets bored.
- Test becomes obsolete. \qquad
- Machine wears out.

Pre-test	Treatment	Post-test
	Treatment	Post-test

\qquad
 \qquad
5. Statistical Regression

Occurs when participants are placed into groups based on extreme scores. \qquad Extreme scores tend to move(regress) toward the mean.

Pre-test	Treatment	Post-test
Pre-test	Delay	Post-test

\qquad
\qquad

-

Benefits and Issues

Benefits.
Issues.

1. OK for preliminary research.
2. Compared to whom?

One-group Pre-test Post-test			
	Pre-test	Independent Variable	Post-test
Group	Measure A	Treatment 1	Measure A

What problems are there with this design?

Benefits and Issues	
Benefits. 1. OK for preliminary research.	Issues. 1. History. 2. Maturation. 3. Testing. 4. Instrument decay.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Non-equivalent Control Group		
Independent Variable	Dependent Variable	
Group A	Treatment 1	Measure
Group X	Treatment 2	Measure
What problems are there with this design?		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Benefits and Issues

Benefits.

1. May be the only alternative in field experimentation.

Issues.

1. Treatment difference is CONFOUNDED by group difference.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Thought Problem \#1

Patty Kayke decided to evaluate the effects of low-level sound tone on the sleeping behavior of dogs. She took a group of dogs and through a set of hidden speakers played a 200 Hz sound to the dogs at 20 decibels. She then evaluated their sleeping behavior.

1. What kind of design is this?
2. Is this a good or bad design? Why?
3. How could this study be improved?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Thought Problem \#2
Justa Minnit decided to evaluate the effect of taking one long versus several short breaks on the learning level of his class. Justa took the Tuesday class and had them take one 15 minute break. For the Wednesday class Justa have the students three 5 minute breaks. Justa then gave both classes the same quiz to measure learning.

1. What kind of design is this?
2. Is this a good or bad design? Why?
3. How could this study be improved?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Thought Problem \#3

Pickup N. Dropoff wanted to evaluate the influence of Jolt on the driving habits. Dropoff had a group

1. What kind of of people drink 12 oz of Jolt, then assessed their ability to drive through a set of traffic cones. Dropoff then waited an hour and had the people drive through the cones again. He evaluated the differences number of cones hit.
design is this?
design is this?
2. Is this a good or bad design? Why?
3. How could this study be improved?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Thought Problem \#4

Petal D. Stamen was interested in the influence that flowers would have on women's affection toward men. Petal sent a dozen roses to a random sample of women then asked them to fill out a well researched affection survey.

1. What kind of design is this?
2. Is this a good or bad design? Why?
3. How could this study be improved?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
