Problem 1. Dr. Sy Napse had the idea that intense intellectual effort would affect the level of blood cholesterol but did not know how much. The researcher had data from a huge group where μ $=150$ and $\sigma=16$. A group of 36 heavy thinkers had a mean level of 156 with $s=12$. Was Napse correct in this assumption?

1. What is your research hypothesis?
2. What is H_{0} ?
3. What is H_{A} ?
4. Is this a one or two-tailed test?
5. What is your statistical hypothesis?
6. What is the significance level and its critical value of Z ?
7. What is the Standard error of the mean?
8. What is your calculated statistic?
9. What is your statistical decision?
10. What is your conclusion?

Intellectual effort will affect blood pressure.

Intellectual effort will not affect blood pressure

Intellectual effort will affect blood pressure

Two
$\mathbf{M}_{\text {intellecutal effort }} \neq \boldsymbol{\mu}$
$\alpha=.05$, critical value $= \pm 1.96$

2.667

$$
Z=2.25
$$

Reject the null hypothesis

Intense intellectual effort increases blood cholesterol.

Problem 2. Sammi Quaver thinks that listening to Barry Manilow music while studying will affect students' performance on the Graduate Record Examinations but does not know whether the listening will distract students making their studying less effective, or if it will improve studying by acting as 'white noise' blocking out other distracting sounds. The GRE has the following statistical properties: $\mu=500$ and $\sigma=100$. Using a sample of 121 students who listened to Barry Manilow while preparing for the GRE, the professor found that the group obtained a mean score of 460 with a standard deviation of 68.2 . What conclusion can you draw from these data?

1. What is your research hypothesis?
2. What is H_{0} ?
3. What is H_{1} ?
4. Is this a one or two-tailed test?
5. What is your statistical hypothesis?
6. What is the significance level and its critical value of Z ?
7. What is the Standard error of the mean?
8. What is your calculated statistic?
9. What is your statistical decision?
10. What is your conclusion?

Listening to Barry Manilow will affect performance on the GRE.

Listening to Barry Manilow will not affect GRE performance.

Listening to Barry Manilow will affect GRE performance.

Two
$\mathbf{M}_{\text {Barry Manilow music }} \neq \boldsymbol{\mu}$
$\alpha=.05$, critical value $= \pm 1.96$

9.091

$Z=-4.40$ (note the negative value!)

Reject the Null hypothesis

Listening to Barry Manilow music will reduce performance in the GRE.

Problem 3. Dr. Oh Takashowa thought that hot baths prior to bed time would reduce the amount of sleep people required. The researcher knew that the average number of hours required for most people is 8 hours; the standard deviation is .72 hours. Using a sample of 36 people who took hot baths before going to bed, the researcher found that the mean amount of time they needed to sleep each night was 7.7 hours. Is there any statistical evidence that the bathing worked?

1. What is Null Hypotheses H_{0} ?
2. What is Alternative hypothesis, H_{A} ?

3 Is this a one or two-tailed test?
4. What is the statistical hypothesis?
5. What is the significance level and critical value or the test?
6. What is the standard error?
7. What is Z ?
8. What is your statistical decision?
9. What is your conclusion?

Hot baths will not reduce the amount of sleep people need.
Hot baths will reduce the amount of sleep people need.
One
$M_{\text {hot baths }}<\mu$
$\alpha=.05$, critical value $=-1.64$ (Note the negative value)

.12
-2.50

Reject the null hypothesis

Taking hot baths reduces the amount of sleep one needs.

