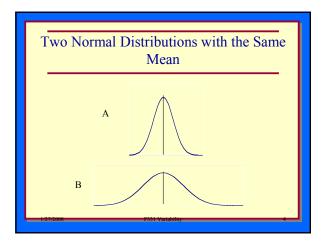
Psy 331 Inferential Statistics

Measures of Variability


What We Will Cover in This Section

- · What variability is.
- · Range.
- Variance and Standard deviation.

Overview

The Mean describes the 'typical' score; measures of variability show how much the rest of the scores in the distribution are spread out around the mean.

Range

- The distance between the lowest and highest score.
- Formula

Highest Score Lowest Score Range

Example

1 3 4 6 8 12 15 16 18 19 1 3 4 6 8 12 15 16 18 79

Properties of the Range

- 1. Gross descriptive statistic.
- 2. Highly sensitive to extreme scores.
- 3. Relatively unstable.
- 4. Insensitive to the shape of the distribution between the two scores.

Range Assumptions

1. Scores represent interval or ratio scales.

1/27/2008 P331 Variabili

,				
	Score	x-x	(X – X)²	
-	5	-2.50	6.25	
	6	-1.50	2.25	
	7	50	.25	
	8	.50	.25	
	9	1.50	2.25	Sum of
	10	2.50	6.25	Squares
Sum	45	0	17.50	├ ── ┃
Mean	7.5		2.92	
1/27/2008		P331 Variability		Variance
1/21/2000		1551 Variability		

Sum of Squares

Sum of the squared deviation scores around the mean.

$$SS = \sum (X - \overline{X})^2$$

1/27/2008 P331 Variability

Variance and Standard Deviation

- The Variance (S2) is expressed in squared units.
- We need to convert the variability measure back to unsquared units.
- To do this we take the square root of the variance.
- This number is called the standard deviation (s).

$$S = \sqrt{S^2}$$

1/27/2008

The Key Measures of Variability

Term	Formula	Computation
Sum of Squares	$\sum (X - \overline{X})^2$	17.50
Variance	$\frac{\Sigma \left(X - \overline{X}\right)^2}{N}$	2.92
Standard Deviation	$\sqrt{\frac{\Sigma(X-\overline{X})^2}{N}}$	1.71

Variance Mean squared deviation score. Sample Formula Population Formula $S_X^2 = \frac{\Sigma \left(X - \overline{X}\right)^2}{N} \Longrightarrow \hat{s}_X = \frac{\Sigma \left(X - \overline{X}\right)^2}{N - 1}$ Degrees of freedom (df) Degrees of freedom (df)

Standard Deviation

Square root of the variance.

Sample Formula

Population Formula

$$S_X = \sqrt{\frac{\Sigma \left(X - \overline{X}\right)^2}{N}}$$

$$\hat{S}_X = \sqrt{\frac{\Sigma \left(X - \overline{X}\right)^2}{N - 1}}$$

Another Example

Population Parameters

Statistic	Sample Description	Sample (used to estimate the population)	Population symbol
Variance	S ²	Ŝ² or s²	σ^2
Standard Deviation	S	Ŝors	σ

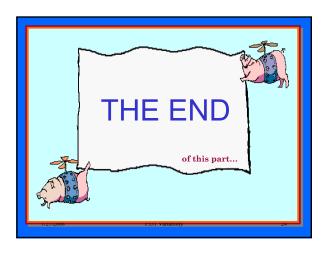
Properties of the Variance and Standard Deviation

- 1. Sensitive to the location of each score in the distribution.
- 2. Sensitive to extreme scores.
- 3. Resistant to sampling fluctuation.
- 4. Is used in most higher order statistical computations.

1. The variables are measured on an interval or ratio scale.
2. There are no outliers in the distribution.

Interpretation and Use

- · How much difference is there in a set of scores.
 - Are the scores similar?
- Provides input to other statistical procedures.


Key Learning Points, Part 1

- 1. The Range is a rough estimate of variability.
- 2. The *Variance* represents the mean squared deviation score.
- 3. The *Standard Deviation* is the square root of the variance.
- 4. The higher the *Standard Deviation* the more spread out the scores will be.

Key Learning Points, Part 2 S. S is the symbol used to represent the sample standard deviation.
5. S is the symbol used to represent
the comple standard deviation
5. \hat{S}^{2} , or s^{2} , is the <u>unbiased estimate</u>
of the population variance σ^2 . 7. \hat{S} , or s , is the <u>unbiased estimate</u> of
the population standard deviation σ.
29/2008 P334 Variability 21

