

What is hypothesis testing?

A set of logical and statistical guidelines used to make decisions from sample statistics to population characteristics.

Types of Hypotheses

- Research hypothesis.
- Logical hypotheses.
 Null hypothesis (H_o).
 - Alternative hypothesis (H_{a)}.
- · Statistical hypothesis.

P331 Hypothesis Test

Research Hypothesis

Statement in words as to what the investigator expects to find.

Example.

Students who drink caffeine will be able to memorize information faster than students who do not drink caffeine.

Logical Hypotheses

Null Hypothesis (H_o). Statement that the treatment does not have the expected effect.

Alternative Hypothesis (H_a). Statement that the treatment had the expected effect.

Characteristics of the Logical Hypotheses

- 1. They are mutually exclusive.
- 2. They are mutually exhaustive.

Statement in statistical terms as to what would be found if the research hypothesis is true.

Example.

$$M_a > M_b$$
 (one tail)

 $M_a > M_b$ or $M_a < M_b$ (two tail)

A b b

3. Our model for making this decision is founded on the normal distribution.

I Hypothesis Testin

Decision Steps

- 1. We start by assuming that the Null Hypothesis is true.
- 2. When a statistical **result is rare** (less than 5% or 1% of the time) we conclude that it probably did not happen by chance.
- 3. If we conclude that a result did not happen by chance (e.g. it is rare), we **reject H_o**.
- 4. The only option is to conclude that the true state of affairs is represented by $\rm H_{a^*}$

351 Hypothesis Testi

- 1. Science is conservative.
- 2. We assume that the research hypothesis is invalid until the evidence is so strong that we must conclude that it is true.
- 3. We statistically 'test' the assumption that the research hypothesis is not true.
- 4. If the data are so strong that we believe that they could not have happened by chance, then we reject H_o .

Key Learning Points #2

- Since our decisions are based on probability theory not absolute surety, we can make mistakes.
- The probability of concluding that the research hypothesis is correct when it isn't (rejecting Ho when it is true) is represented by alpha (α).
- 7. The probability of failing to find a result when there is one is a Type II error (β).

331 Hypothesis Testin

