Psy 331 Inferential Statistics

Measures of Central Tendency

4 5

What We Will Cover in This Section

- Introduction
- Statistical notation review
- Mean
- Median
- Mode

Summation (Σ), Part 1

- The Greek letter sigma (Σ) means 'add up'.
 - Σx means add all of the scores for variable x.
 - $\Sigma \mathbf{y}$ means add all of the scores for variable y.

Summation, Part 2

- Σx² means add all of the x scores after squaring them.
- $(\Sigma x)^2$ means add all of the x scores first, then square them.
- Σ(x y)² means subtract the y score from each x score then square the difference.

Example

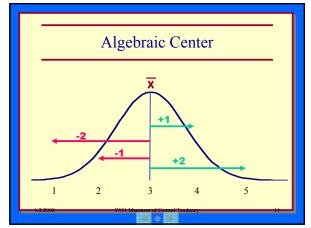
×	У	X ²	(x-y)	(x-y) ²
2	4	4	-2	4
3	3	9	0	0
5	2	25	3	9
6	1	36	5	25
16	10	74	6	38
Σχ	Σ	Σ χ 2	Σ(x - y)	$\Sigma(x-y)^2$

Question

What number would you use to describe the typical GPA of people in this class?

Mean

- Sum the scores and divide by the number of scores.
- Symbols
 - Sample statistic: M_x o√X
 - Population parameter: μ


Defining Formula

$$M_{x}(or\overline{X}) = \frac{\sum x}{N}$$

What is the mean of this distribution?
1, 2, 3, 4, 5
$\overline{X} = 3.00$

Properties of the Mean

- 1. Sensitive to each score in the distribution.
- 2. Sensitive to extreme scores.
- 3. Most stable measure, resists sampling fluctuation.
- 4. Unbiased estimate of μ.
- 5. Used in some form or other in almost all other statistical procedures.
- 6. Algebraic center of the distribution.

-	. •				
D	evi	atı.	α n	ററ	re

Difference between the mean and a raw score.

$$X - \overline{X}$$

Strange Property of the Mean

$$\sum (X - \overline{X}) = 0$$

Demonstration: $\overline{X} = 7.5$							
Score X - X							
	4	-3.5					
	5	-2.5					
	6	-1.5					
	7	5					
	8	.5					
	9	1.5					
	10	2.5					
	11	3.5					
1/2/2008	60	? Central Tendency					

Assumptions

- 1. Measurement on <u>interval</u> or <u>ratio</u> scale.
- 2. Best used when the <u>distribution</u> <u>is normal.</u>

Key Learning Points

- The *mean* is the best estimator of any score in a distribution.
- The *deviation score* indicates the amount of error in this prediction.
- The sum of the *deviation scores* always equals zero.
- The sample mean, M, is used to estimate the population parameter, µ.

Median

- The score below which 50% of the scores fall.
- Represents P₅₀.
- Divides the distribution in half.
- Symbol.
 - Sample: Mdn

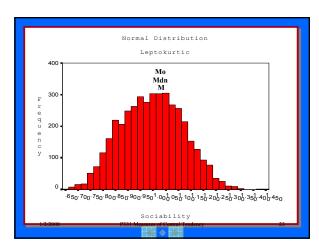
Example								
8	9	10	11	12	13	14	15	16
8	9	10	11	12	13	16	16	46
8	9	10	11	t	15	19	26	29
13								

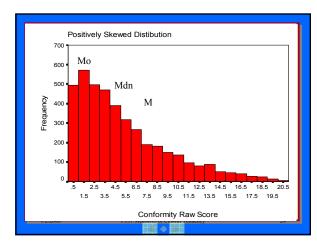
Properties

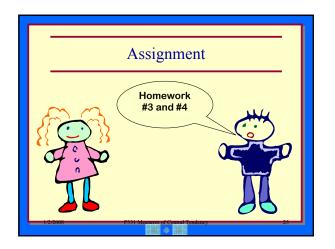
- Sensitive to the number of scores that fall above it and below it but not their values.
- 2. Relatively insensitive to extreme scores in skewed distributions.
- 3. Next best in resisting sampling fluctuations.
- 4. Best used when there are **skewed distributions**.
- 5. Not much use in higher level statistics.

Assumptions

- 1. Data are measured on an ordinal scale or higher.
- 2. The Median represents the 50^{th} percentile (P_{50}).


Mode


- The score that occurs most frequently in a distribution.
- Used for nominal scales or higher.
- Symbol.
 - Sample: Mo


Properties

- 1. Easy to compute.
- 2. OK for rough approximations of the 'typical' score.
- 3. Least stable score, highly sensitive to sampling error.
- 4. May be more than one mode.
- 5. Ignores much numerical information.
- 6. Little use beyond descriptive level.

1/2/2008 P331 Measures of Central Tendency

