

What We Will Cover in This Section

- Introduction.
- Overview.
- Factorial ANOVA
- Repeated Measures
 ANOVA.

Definition

Experimental design in which there are two or more independent variables and one dependent variable.

Problem #1 Effects of Music on Mood

A student was researching the influence of music on mood. She hypothesized that tone of the music (aggressive vs. calm) would influence a person's mood but that the type of music (classical vs. popular) would not affect mood.

She randomly divided 60 volunteers into one of four groups: classical-aggressive, classical-calm, popular-aggressive, or popular-calm. Then she played a six-minute musical selection for the person then had them rate their mood.

Music	Study Descriptive Statistics			
	Music 7	Гуре		
	Aggressive	Calm		
Classical	56.00	28.27	42.14	
Popular	51.29	29.73	40.51	
	53.64	29.00	41.32	
8/21/2007	P331 Analysi	s of Variance	-	

Γ	Jo	b Satisfacti	on Study		
		Smok	er?		
		Smoker	Non Smoker		
	Worker	10	10	10	
	Slacker	2	2	2	
		6	6		
	8/21/2007	P331 Analysis of Va	miance	9	

Γ	Теас	her Satisfac	ction Stud	dy		
		Final Type				
		Easy	Hard			
	A Student	12.00	5.00	8.50		
	F Student	10.00	4.00	7.00		
		11.00	4.5			
L	8/21/2007	P331 Analysis of Va	riance			

Interaction

The combined effects of two or more independent variables on the dependent variable.

- Is the combined effect of a tranquilizer and alcohol stronger than either taken alone?
- Is exercise and healthy diet better than either alone?
- Is distributed studying and studying with a classmate more effective than either one alone.

J	ob Satisfac	tion #2	
	Smoke	ers	
	No	Yes	
Smoking Not Allowed	10	1	5.5
Smoking Allowed	1	10	5.5
	5.5	5.5	
8/21/2007	P331 Analysis of Va	riance	

Problem 2*

Vera Loude was convinced that the volume of commercials would make the commercials more persuasive. She also felt that this effect would be different for males and females.

To test her belief Vera recorded an advertisement and played it to a group of male and female volunteers at one of three levels: Soft, Medium, and Loud.

After listening to the advertisement the volunteers were asked to rate its persuasiveness.

* From Heiman, G. W. (2003) Basic Statistics for the Behavioral Sciences. Houghton Mifflin: Boston

Vera's Data				
	Soft	Medium	Loud	Mean
Male	9 4 11 (M=8.00)	8 12 13 (M=11.00)	18 17 15 (M=16.67)	M=11.89
Female	2 6 4 (M=4.00)	9 10 17 (M=12.00)	6 8 4 (M=6.00)	M=7.33
Mean	M=6.00	M=11.50	M=11.33	M _G =9.611

Where Do the Numbers Come From?				
	Soft	Medium	Loud	Mean
Male	(9) 4 11) M= 8.0	(8) 12 13) M= 11.0	(18) (17) (15) M= 16.67	M=11.89
Female	2 6 4 M= 4.0	(9) 10 17) M= 12.0	6 8 4 M= 6.0	M=7.33
Mean	M=6.00	M=11.50	M=11.33	M _G =9.611
8/21/2007		P331 Analysis of V	ariance	21

A	NOVA Sum	mary Ta	ble	
Source	Sum of Squares	df	MS	F
Between				
Volume	117.45	2	58.73	7.14
Gender	93.39	1	93.39	11.36
Gender x Volume	102.77	2	51.39	6.25
Within	98.67	12	8.22	
Total	412.28	17		
8/31/3697	P331 Analysis	A Variance		
6/21/2007				22

A	NOVA Sum	mary Tal	ble	
Source	Sum of Squares	df	MS	F
Between				
Volume	117.45	2	58.73	7.14
Gender	93.39	1	93.39	11.36
Gender x Volume	102.77	2	51.39	6.25
Within	98.67	12	8.22	
Total	412.28	17		
8/21/2007	P33 LAnalysis	of Variance		

Where do the d	egrees of freed from?	om come	
	Calculation	Result	
Volume	(k _{volume} -1)	3-1=2	
Gender	(k _{gender} – 1)	2-1=1	
Volume x Gender	(df _{volume})(df _{gender})	2 x 1 = 2	
-8/21/2007 P	331 Analysis of Variance	24	

Evaluating the Null Hypothesis				
	F _{obt}	F _{crit}		
Volume	F _(2,12) = 7.14	3.88		
Gender	F _(1,12) = 11.36	4.75		
Volume x Gender	F _(2,12) = 6.25	3.88		
	331 Analysis of Variance	25		

Post Hoc Tests

- For Main effects conduct the regular Tukey HSD test.
- For Interactions
 - Make comparisons within
 - Each column.
 - Each row.
 - When using Tukey, adjust k when selecting the value for q.

Problem 2: Chocolate Chip Study

The Home for Retired College Professors (HRCP) wants to do a fund raiser using the expertise of its residents as business consultants. After a trial, the clients complained that the advice was too impractical and academic. The director, Gerry Atric, wants to see if feeding these oldsters with chocolate chips would increase the practicality of their recommendations.

Atric felt that teaching experience would also have an impact on the treatment effect, so she divided the group into those who taught more than 20 years and those who taught less than 20 years.

e study s	ummar	y table	
S df	N	1S	F
2.45	1 92	.45 8	38.05*
3.45	1 68	45 6	5.19*
3 05	1 76	05 7	72.43*
3.80 1	6	1.05	
3.75 1	9		
	e study s S df 2.45 3.45 5.05 5.80 1 3.75 1	e study summar 6 df N 2.45 1 92 3.45 1 68 6.05 1 76 5.80 16 1 3.75 19	e study summary table G df MS 2.45 1 92.45 8 3.45 1 68.45 6 6.05 1 76.05 7 3.75 19 105 105

Effec	et Size
	η^2
Experience	.338
Chips	.250
Experience x Chips	.278

Factorial ANOVA Assumptions

- 1. The observations within each treatment condition are independent.
- 2. The population distribution is relatively normal.
- 3. The variances within each treatment condition are equal.

Analysis of Van

	Baseli	Baseline weeks		Treatment Weeks									
Subject	1	2	3	4	5	Total							
1	21	(22)	(8)	(6)	6	63							
2	20	19	10	4	4	47							
3	17	15	5	4	5	46							
4	25	30	13	12	17	97							
5	30	27	13	8	6	84							
6	19	27	8	7	4	65							
7	26	16	5	2	5	54							
8	17	18	8	1	5	49							
9	26	24			9	81							
Mean	22.33	22.00	9.33	5.78	6.78	13.24							
8/21/2007		P3:	Analysis of V	/ariance		8/21/2007 P331 Analysis of Variance 43							

Summary Table						
Source	df	SS	MS	F		
Between						
Weeks	4	2449.20	612.30	85.04		
Within						
Between Subjects	8	486.71		Frror		
Error	32	230.40	7.20			
Total	44	3166.31		45		

