Psychological Statistics Measures of Variability

Overview

The Mean describes the 'typical' score; measures of variability show how much the rest of the scores in the distribution are spread out around the mean.

Range

- · The distance between the lowest and highest score.
- Formula Range = Highest Score - Lowest Score
- Example

1 3 4 6 8 12

1 3 4 6 8 12 15 18

Properties of the Range

- 1. Gross descriptive statistic.
- 2. Highly sensitive to extreme scores.
- 3. Relatively unstable.
- 4. Insensitive to the shape of the distribution between the two scores.

Range Assumptions

Scores represent interval or ratio scales.

P225 Variability

Semi-Interquartile Range

Computation

Interquartile Range (IQ) = $P_{75} - P_{25}$

Semi-Interquartile Range (SIQ) =
$$\frac{P_{75} - P_{25}}{2}$$

Interpretation

The distance between the middle 50% of the scores.

P225 Variability

Interquartile Range: Properties

- 1. Not sensitive to extreme scores.
- 2. Relatively stable.
- 3. Does not consider the shape of the distribution.
- 4. Ignores all but two of the scores.

A A A

Interquartile Range Assumptions

1. Scores represent interval or ratio scales.

orsuzous 1225 variability

	Dev	viation S	Score	
	Score	x - X	(X – X) ²	
	5	-2.5	6.25	
	6	-1.5	2.25	
	7	5	.25	
	8	.5	.25	
	9	1.5	2.25	Sum of
	10	2.5	6.25	Squares
Sum	45	0	17.50	·
Mean	7.5		2.92	
8/30/2003		P225 Variability	7	12

Sum of Squares

Sum of the squared deviation scores around the mean.

$$SS = \sum (X - \overline{X})^2$$

4 4 1

Variance

Mean squared deviation score

Sample Formula

Population Formula

$$S_X^2 = \frac{\Sigma \left(X - \overline{X}\right)^2}{N}$$

$$s_X^2 = \frac{\Sigma \left(X - \overline{X}\right)^2}{N - 1}$$

Degrees of freedom (df)

P225 Variability

Standard Deviation

Square root of the variance.

Sample Formula

Population Formula

$$S_X = \sqrt{\frac{\Sigma \left(X - \overline{X}\right)^2}{N}}$$

$$s_{X} = \sqrt{\frac{\Sigma \left(X - \overline{X}\right)^{2}}{N - 1}}$$

$$S_X = \sqrt{S_X^2}$$

$$s_X = \sqrt{s_X^2}$$

of A So-

Population Parameters

Statistic	Sample	Sample (used to estimate	Population symbol	
		the population)		
Variance	S ²	s ²	σ^2	
Standard Deviation	S	S	σ	

400

Properties of the Standard Deviation

- 1. Sensitive to the location of each score in the distribution.
- 2. Sensitive to extreme scores.
- 3. Resistant to sampling fluctuation.
- 4. Is used in most higher order statistical computations.

2003 P225 Variabilit

4 0 0

Assumptions

- 1. The variables are measured on an interval or ratio scale.
- 2. There are no outliers in the distribution.

all do la-

Interpretation and Use

- · How much difference is there in a set of scores.
 - Are the scores similar?
- Provides input to other statistical procedures.

Key Learning Points, Part 1

- 1. The Range is a rough estimate of variability.
- 2. The Variance represents the mean squared deviation score.
- 3. The Standard Deviation is the square root of the variance.
- 4. The higher the standard deviation the more spread out the scores will be.

Key Learning Points, Part 2

- 5. S is the symbol used to represent the sample standard deviation.
- 6. s^2 is the unbiased estimate of the population variance σ^2 .
- 7. s is the <u>unbiased estimate</u> of the population standard deviation σ.

