
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What We Will Cover in This Section

- Introduction
- Statistical notation
- Mean
- Median
- Mode

\qquad

Summation (Σ), Part 1

- The Greek letter sigma (Σ) means 'add up'.
$-\Sigma \mathbf{x}$ means add all of the scores for variable X.
$-\Sigma y$ means add all of the scores for variable y. \qquad
\qquad
\qquad

Summation, Part 2

- Σx^{2} means add all of the \mathbf{x} scores after squaring them.
- $(\Sigma \mathbf{x})^{2}$ means add all of the \mathbf{x} scores first, then square them.
- $\Sigma(x-y)^{2}$ means subtract the y score from each x score then square the difference.

Example				
x	y	x^{2}	($\mathrm{x}-\mathrm{y}$)	$(x-y)^{2}$
2	4	4	-2	4
3	3	9	0	0
5	2	25	3	9
6	1	36	5	25
16	10	74	6	38
5x	इy	Σx^{2}	$\Sigma(x-y)$	$\Sigma(x-y)^{2}$

- Sum the scores and divide by the number of scores.
- Symbols
- Sample statistic: M or $\overline{\mathrm{X}}$
- Population parameter: μ
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Defining Formula

$$
M(o r \bar{X})=\frac{\sum x}{N}
$$

Properties of the Mean

1. Algebraic center of the distribution.
2. Sensitive to each score in the distribution.
3. Sensitive to extreme scores.
4. Most stable measure, resists sampling fluctuation.
5. Used to estimate μ.
6. Used in some form or other in almost all other statistical procedures.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\sum(X-\bar{X})=0$
\qquad

Demonstration: $\overline{\mathrm{X}}=7.5$					
	Score $\mathrm{X}-\overline{\mathrm{X}}$ 4 5 -3.5 6 -2.5 7 -1.5 7 -.5 8 .5 9 1.5 10 2.5 11 60 3.5				

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assumptions

1. Measurement on interval or ratio scale.
2. Best used when the distribution is normal.
\qquad

Median

- The score below which 50% of the scores fall.
- Represents P_{50}.
- Divides the distribution in half. \qquad
- Symbol.
- Sample: Mdn
\qquad

\qquad

Properties

1. Sensitive to the number of scores that fall above it and below it but not their values.
2. Relatively insensitive to extreme scores in skewed distributions.
3. Next best in resisting sampling fluctuations.
4. Best used when there are skewed distributions.
5. Not much use in higher level statistics.
\qquad

Assumptions

1. Data are measured on an ordinal
\qquad scale or higher.
2. The Median represents the $50^{\text {th }}$
\qquad percentile (P_{50}).
\qquad

Mode

－The score that occurs most frequently in a distribution．
－Used for nominal scales or higher．
－Symbol．
－Sample：Mo
\qquad

Properties
1．Easy to compute．
2．OK for rough approximations of the ＇typical＇score．
3．Least stable score，highly sensitive to sampling error．
4．May be more than one mode． \qquad
5．Ignores much numerical information．
6．Little use beyond descriptive level． \qquad
\qquad

